Back to Search Start Over

Climate impacts on extreme energy consumption of different types of buildings.

Authors :
Li M
Shi J
Guo J
Cao J
Niu J
Xiong M
Source :
PloS one [PLoS One] 2015 Apr 29; Vol. 10 (4), pp. e0124413. Date of Electronic Publication: 2015 Apr 29 (Print Publication: 2015).
Publication Year :
2015

Abstract

Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

Details

Language :
English
ISSN :
1932-6203
Volume :
10
Issue :
4
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
25923205
Full Text :
https://doi.org/10.1371/journal.pone.0124413