Back to Search
Start Over
The crystal structure and small-angle X-ray analysis of CsdL/TcdA reveal a new tRNA binding motif in the MoeB/E1 superfamily.
- Source :
-
PloS one [PLoS One] 2015 Apr 21; Vol. 10 (4), pp. e0118606. Date of Electronic Publication: 2015 Apr 21 (Print Publication: 2015). - Publication Year :
- 2015
-
Abstract
- Cyclic N6-threonylcarbamoyladenosine ('cyclic t6A', ct(6)A) is a non-thiolated hypermodification found in transfer RNAs (tRNAs) in bacteria, protists, fungi and plants. In bacteria and yeast cells ct(6)A has been shown to enhance translation fidelity and efficiency of ANN codons by improving the faithful discrimination of aminoacylated tRNAs by the ribosome. To further the understanding of ct(6)A biology we have determined the high-resolution crystal structures of CsdL/TcdA in complex with AMP and ATP, an E1-like activating enzyme from Escherichia coli, which catalyzes the ATP-dependent dehydration of t6A to form ct(6)A. CsdL/TcdA is a dimer whose structural integrity and dimer interface depend critically on strongly bound K+ and Na+ cations. By using biochemical assays and small-angle X-ray scattering we show that CsdL/TcdA can associate with tRNA with a 1:1 stoichiometry and with the proper position and orientation for the cyclization of t6A. Furthermore, we show by nuclear magnetic resonance that CsdL/TcdA engages in transient interactions with CsdA and CsdE, which, in the latter case, involve catalytically important residues. These short-lived interactions may underpin the precise channeling of sulfur atoms from cysteine to CsdL/TcdA as previously characterized. In summary, the combination of structural, biophysical and biochemical methods applied to CsdL/TcdA has afforded a more thorough understanding of how the structure of this E1-like enzyme has been fine tuned to accomplish ct(6)A synthesis on tRNAs while providing support for the notion that CsdA and CsdE are able to functionally interact with CsdL/TcdA.
- Subjects :
- Adenosine Triphosphate metabolism
Amino Acid Sequence
Crystallography, X-Ray
Escherichia coli chemistry
Models, Molecular
Molecular Sequence Data
Nucleic Acid Conformation
Protein Conformation
Protein Structure, Tertiary
Sequence Homology, Amino Acid
Escherichia coli metabolism
Escherichia coli Proteins chemistry
Escherichia coli Proteins metabolism
Nucleotidyltransferases chemistry
Nucleotidyltransferases metabolism
RNA, Transfer metabolism
Ubiquitin-Activating Enzymes chemistry
Ubiquitin-Activating Enzymes metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 10
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 25897750
- Full Text :
- https://doi.org/10.1371/journal.pone.0118606