Back to Search Start Over

Daurinol Enhances the Efficacy of Radiotherapy in Lung Cancer via Suppression of Aurora Kinase A/B Expression.

Authors :
Woo JK
Kang JH
Shin D
Park SH
Kang K
Nho CW
Seong JK
Lee SJ
Oh SH
Source :
Molecular cancer therapeutics [Mol Cancer Ther] 2015 Jul; Vol. 14 (7), pp. 1693-704. Date of Electronic Publication: 2015 Apr 16.
Publication Year :
2015

Abstract

The aurora kinases constitute one family of serine/threonine kinases whose activity is essential for mitotic progression. The aurora kinases are frequently upregulated in human cancers and are associated with sensitivity to chemotherapy in certain ones. In the present study, we investigated whether aurora kinases could be a target to overcome radioresistance or enhance the radiosensitivity of lung cancer. For that purpose, we determined the therapeutic potential of daurinol, an investigational topoisomerase inhibitor, alone and in combination with radiation, by observing its effect on aurora kinases. Daurinol decreased cell viability and proliferation in human colon and lung cancer cells. Gene expression in daurinol-treated human colon cancer cells was evaluated using RNA microarray. The mRNA expression of 18 genes involved in the mitotic spindle check point, including aurora kinase A (AURKA) and aurora kinase B (AURKB), was decreased in daurinol-treated human colon cancer cells as compared with vehicle-treated cells. As expected, radiation increased expression levels of AURKA and AURKB. This increase was effectively attenuated by siRNAs against AURKA and AURKB, which suppressed cell growth and increased apoptosis under radiation. Furthermore, the expression of AURKA and AURKB was suppressed by daurinol in the presence or absence of radiation in colon and lung cancer cells. Daurinol alone or in combination with radiation decreased lung cancer growth in xenograft mouse models. Our data clearly confirm the antitumor and radiosensitizing activity of daurinol in human lung cancer cells through the inhibition of AURKA and AURKB.<br /> (©2015 American Association for Cancer Research.)

Details

Language :
English
ISSN :
1538-8514
Volume :
14
Issue :
7
Database :
MEDLINE
Journal :
Molecular cancer therapeutics
Publication Type :
Academic Journal
Accession number :
25882311
Full Text :
https://doi.org/10.1158/1535-7163.MCT-14-0960