Back to Search Start Over

The 1969-1985 Pozzuoli event and active volcanisms.

Authors :
Yokoyama I
Source :
Proceedings of the Japan Academy. Series B, Physical and biological sciences [Proc Jpn Acad Ser B Phys Biol Sci] 2006 May; Vol. 82 (3), pp. 121-6.
Publication Year :
2006

Abstract

Pozzuoli is located at the center of the Campi Flegrei caldera, near Naples and is famous for its anomalous subsidence and upheaval documented since the Roman period. Its secular and gradual subsidence can be interpreted as self-loading compaction of the caldera fills while abrupt upheavals are geologically suspected to be caused by magmagenic movements or steam forces. In order to interpret the origin and the process of the Pozzuoli upheavals, they are compared with active volcanisms represented by the 1977-1982 eruption of Usu volcano in Hokkaido. Usu volcano outburst in 1977 in major pumice eruptions and repeated magmatic and phreatomagmatic eruptions, and manifested remarkable ground deformations accompanying earthquake swarms. In 1969, the ground of Pozzuoli began to upheave with increases in seismicity but finally failed to cause any eruptive phenomena at the surface; nevertheless there are common characteristics of their motives and processes between the two events. The motive of the Usu deformation is clearly due to magma movements while that of the Pozzuoli upheaval has not been completely settled. A quantitative relationship between seismicity and deformation gives a clue for discussing the motive of the Pozzuoli deformations. The discharge rates of seismic energy and the deformation rates are compared between the two events and a certain similarity is found. This suggests that the origin of the Pozzuoli event may be partly magmatic as well as the Usu eruption, but its behavior largely depends on the property of the caldera deposits. When their deformation volumes are taken into consideration, their characteristics become quantitatively conspicuous. The ground at Pozzuoli is much more easily deformed by the upward motive force than Usu volcano. This is due to the rheological property of the caldera deposits of Campi Flegrei, and agrees to the theory that interprets the secular subsidence observed in historical times, as self-loading compaction. It is interesting that there is a point of contact between anomalous movements of the ground along the seashore in Italy and remarkable magmatic movements at the active volcano in Japan.

Details

Language :
English
ISSN :
0386-2208
Volume :
82
Issue :
3
Database :
MEDLINE
Journal :
Proceedings of the Japan Academy. Series B, Physical and biological sciences
Publication Type :
Academic Journal
Accession number :
25873752
Full Text :
https://doi.org/10.2183/pjab.82.121