Back to Search
Start Over
Targeting Glutamine Metabolism in Breast Cancer with Aminooxyacetate.
- Source :
-
Clinical cancer research : an official journal of the American Association for Cancer Research [Clin Cancer Res] 2015 Jul 15; Vol. 21 (14), pp. 3263-73. Date of Electronic Publication: 2015 Mar 26. - Publication Year :
- 2015
-
Abstract
- Purpose: Glutamine addiction in c-MYC-overexpressing breast cancer is targeted by the aminotransferase inhibitor, aminooxyacetate (AOA). However, the mechanism of ensuing cell death remains unresolved.<br />Experimental Design: A correlation between glutamine dependence for growth and c-MYC expression was studied in breast cancer cell lines. The cytotoxic effects of AOA, its correlation with high c-MYC expression, and effects on enzymes in the glutaminolytic pathway were investigated. AOA-induced cell death was assessed by measuring changes in metabolite levels by magnetic resonance spectroscopy (MRS), the effects of amino acid depletion on nucleotide synthesis by cell-cycle and bromodeoxyuridine (BrdUrd) uptake analysis, and activation of the endoplasmic reticulum (ER) stress-mediated pathway. Antitumor effects of AOA with or without common chemotherapies were determined in breast cancer xenografts in immunodeficient mice and in a transgenic MMTV-rTtA-TetO-myc mouse mammary tumor model.<br />Results: We established a direct correlation between c-MYC overexpression, suppression of glutaminolysis, and AOA sensitivity in most breast cancer cells. MRS, cell-cycle analysis, and BrdUrd uptake measurements indicated depletion of aspartic acid and alanine leading to cell-cycle arrest at S-phase by AOA. Activation of components of the ER stress-mediated pathway, initiated through GRP78, led to apoptotic cell death. AOA inhibited growth of SUM159, SUM149, and MCF-7 xenografts and c-myc-overexpressing transgenic mouse mammary tumors. In MDA-MB-231, AOA was effective only in combination with chemotherapy.<br />Conclusions: AOA mediates its cytotoxic effects largely through the stress response pathway. The preclinical data of AOA's effectiveness provide a strong rationale for further clinical development, particularly for c-MYC-overexpressing breast cancers.<br /> (©2015 American Association for Cancer Research.)
- Subjects :
- Animals
Cell Line, Tumor
Endoplasmic Reticulum Chaperone BiP
Enzyme Inhibitors pharmacology
Female
Humans
Magnetic Resonance Spectroscopy
Mice
Mice, Transgenic
Xenograft Model Antitumor Assays
Aminooxyacetic Acid pharmacology
Antineoplastic Agents pharmacology
Breast Neoplasms metabolism
Glutamine metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1557-3265
- Volume :
- 21
- Issue :
- 14
- Database :
- MEDLINE
- Journal :
- Clinical cancer research : an official journal of the American Association for Cancer Research
- Publication Type :
- Academic Journal
- Accession number :
- 25813021
- Full Text :
- https://doi.org/10.1158/1078-0432.CCR-14-1200