Back to Search
Start Over
Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise.
- Source :
-
PloS one [PLoS One] 2015 Mar 23; Vol. 10 (3), pp. e0119382. Date of Electronic Publication: 2015 Mar 23 (Print Publication: 2015). - Publication Year :
- 2015
-
Abstract
- Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG) of hypertensive rats had higher (p<0.05) caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05) ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05) Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05) Beclin-1 and ATG7 protein, as well as decreased (p<0.05) caspase-3, calpain, and cathepsin activity. Left ventricle (LV) of hypertensive rats had reduced (p<0.05) AMPKα and LC3II protein, as well as elevated (p<0.05) p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05) proteasome activity but reduced (p<0.05) caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.
- Subjects :
- AMP-Activated Protein Kinases metabolism
Animals
Blood Pressure
Forkhead Box Protein O3
Forkhead Transcription Factors metabolism
Gene Expression Regulation, Enzymologic
Male
Muscle, Skeletal enzymology
Muscle, Skeletal metabolism
Myocardium enzymology
Myocardium metabolism
Peptide Hydrolases genetics
Phosphorylation
Proto-Oncogene Proteins c-akt metabolism
RNA, Messenger genetics
RNA, Messenger metabolism
Rats
Rats, Inbred SHR
Reactive Oxygen Species metabolism
Ribosomal Protein S6 Kinases, 70-kDa metabolism
Time Factors
Ubiquitin genetics
Ubiquitin metabolism
Autophagy
Muscle, Skeletal pathology
Myocardium pathology
Peptide Hydrolases metabolism
Physical Conditioning, Animal
Proteolysis
Signal Transduction
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 10
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 25799101
- Full Text :
- https://doi.org/10.1371/journal.pone.0119382