Back to Search Start Over

Postnatal administration of allopregnanolone modifies glutamate release but not BDNF content in striatum samples of rats prenatally exposed to ethanol.

Authors :
Yunes R
Estrella CR
García S
Lara HE
Cabrera R
Source :
BioMed research international [Biomed Res Int] 2015; Vol. 2015, pp. 734367. Date of Electronic Publication: 2015 Feb 22.
Publication Year :
2015

Abstract

Ethanol consumption during pregnancy may induce profound changes in fetal CNS development. We postulate that some of the effects of ethanol on striatal glutamatergic transmission and neurotrophin expression could be modulated by allopregnanolone, a neurosteroid modulator of GABAA receptor activity. We describe the acute pharmacological effect of allopregnanolone (65 μg/kg, s.c.) administered to juvenile male rats (day 21 of age) on the corticostriatal glutamatergic pathway, in both control and prenatally ethanol-exposed rats (two ip injections of 2.9 g/kg in 24% v/v saline solution on gestational day 8). Prenatal ethanol administration decreased the K(+)-induced release of glutamate regarding the control group. Interestingly, this effect was reverted by allopregnanolone. Regarding BDNF, allopregnanolone decreases the content of this neurotrophic factor in the striatum of control groups. However, both ethanol alone and ethanol plus allopregnanolone treated animals did not show any change regarding control values. We suggest that prenatal ethanol exposure may produce an alteration of GABAA receptors which blocks the GABA agonist-like effect of allopregnanolone on rapid glutamate release, thus disturbing normal neural transmission. Furthermore, the reciprocal interactions found between GABAergic neurosteroids and BDNF could underlie mechanisms operating during the neuronal plasticity of fetal development.

Details

Language :
English
ISSN :
2314-6141
Volume :
2015
Database :
MEDLINE
Journal :
BioMed research international
Publication Type :
Academic Journal
Accession number :
25793205
Full Text :
https://doi.org/10.1155/2015/734367