Back to Search Start Over

A computer-assisted 3D model for analyzing the aggregation of tumorigenic cells reveals specialized behaviors and unique cell types that facilitate aggregate coalescence.

Authors :
Scherer A
Kuhl S
Wessels D
Lusche DF
Hanson B
Ambrose J
Voss E
Fletcher E
Goldman C
Soll DR
Source :
PloS one [PLoS One] 2015 Mar 19; Vol. 10 (3), pp. e0118628. Date of Electronic Publication: 2015 Mar 19 (Print Publication: 2015).
Publication Year :
2015

Abstract

We have developed a 4D computer-assisted reconstruction and motion analysis system, J3D-DIAS 4.1, and applied it to the reconstruction and motion analysis of tumorigenic cells in a 3D matrix. The system is unique in that it is fast, high-resolution, acquires optical sections using DIC microscopy (hence there is no associated photoxicity), and is capable of long-term 4D reconstruction. Specifically, a z-series at 5 μm increments can be acquired in less than a minute on tissue samples embedded in a 1.5 mm thick 3D Matrigel matrix. Reconstruction can be repeated at intervals as short as every minute and continued for 30 days or longer. Images are converted to mathematical representations from which quantitative parameters can be derived. Application of this system to cancer cells from established lines and fresh tumor tissue has revealed unique behaviors and cell types not present in non-tumorigenic lines. We report here that cells from tumorigenic lines and tumors undergo rapid coalescence in 3D, mediated by specific cell types that we have named "facilitators" and "probes." A third cell type, the "dervish", is capable of rapid movement through the gel and does not adhere to it. These cell types have never before been described. Our data suggest that tumorigenesis in vitro is a developmental process involving coalescence facilitated by specialized cells that culminates in large hollow spheres with complex architecture. The unique effects of select monoclonal antibodies on these processes demonstrate the usefulness of the model for analyzing the mechanisms of anti-cancer drugs.

Details

Language :
English
ISSN :
1932-6203
Volume :
10
Issue :
3
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
25790299
Full Text :
https://doi.org/10.1371/journal.pone.0118628