Back to Search
Start Over
Pregnancy-induced amelioration of muscular dystrophy phenotype in mdx mice via muscle membrane stabilization effect of glucocorticoid.
- Source :
-
PloS one [PLoS One] 2015 Mar 16; Vol. 10 (3), pp. e0120325. Date of Electronic Publication: 2015 Mar 16 (Print Publication: 2015). - Publication Year :
- 2015
-
Abstract
- Duchenne muscular dystrophy (DMD), the most common and severe type of dystrophinopathy, is an X-linked recessive genetic disease caused by the absence of dystrophin, which leads to fragility and vulnerability of the sarcolemma to mechanical stretching with increased membrane permeability. Currently, glucocorticoids such as prednisolone are the only medication available for DMD. However, molecular pathways responsible for this effect are still unclear. In addition, it remains unclear whether sex-related factors, including pregnancy and the postpartum period, affect the phenotype of dystrophinopathy. Here, we report the amelioration of muscle membrane permeability in the diaphragm muscle of pregnant and postpartum, but not in nulliparous, mdx mice, an animal model for DMD, during the physiological surge of corticosterone, the most abundant glucocorticoid in rodents. Cultures of single muscle fibers and myotubes isolated from mdx mouse diaphragm demonstrate resistance to hypo-osmotic shock when treated with corticosterone but not with estradiol or progesterone. This corticosterone-mediated resistance was diminished by an antagonist of corticosterone, indicating that the glucocorticoid-glucocorticoid receptor axis plays a role in this membrane stabilization effect on muscle. Moreover, subcutaneous injection of corticosterone into mdx mice showed decreased membrane permeability. This is the first report to demonstrate that pregnancy-related resistance to muscle fiber damage in mdx mice due to the membrane stabilization effect of corticosterone. We also propose that this membrane stabilization effect is exerted through annexin A1 up-regulation as the molecular mechanisms of glucocorticoid effects on DMD muscle. Furthermore, single muscle fiber culture studies provide a sensitive chemical screening platform for muscular dystrophies.
- Subjects :
- Animals
Annexin A1 genetics
Annexin A1 metabolism
Cell Membrane drug effects
Cell Membrane Permeability
Corticosterone pharmacology
Female
Mice
Mice, Inbred mdx
Muscle Fibers, Skeletal drug effects
Muscle Fibers, Skeletal pathology
Muscular Dystrophy, Duchenne pathology
Osmotic Pressure
Pregnancy
Up-Regulation
Cell Membrane metabolism
Corticosterone blood
Muscle Fibers, Skeletal metabolism
Muscular Dystrophy, Duchenne metabolism
Phenotype
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 10
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 25775477
- Full Text :
- https://doi.org/10.1371/journal.pone.0120325