Back to Search
Start Over
A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish.
- Source :
-
Developmental cell [Dev Cell] 2015 Mar 23; Vol. 32 (6), pp. 756-64. Date of Electronic Publication: 2015 Mar 05. - Publication Year :
- 2015
-
Abstract
- CRISPR/Cas9 technology of genome editing has greatly facilitated the targeted inactivation of genes in vitro and in vivo in a wide range of organisms. In zebrafish, it allows the rapid generation of knockout lines by simply injecting a guide RNA (gRNA) and Cas9 mRNA into one-cell stage embryos. Here, we report a simple and scalable CRISPR-based vector system for tissue-specific gene inactivation in zebrafish. As proof of principle, we used our vector with the gata1 promoter driving Cas9 expression to silence the urod gene, implicated in heme biosynthesis, specifically in the erythrocytic lineage. Urod targeting yielded red fluorescent erythrocytes in zebrafish embryos, recapitulating the phenotype observed in the yquem mutant. While F0 embryos displayed mosaic gene disruption, the phenotype appeared very penetrant in stable F1 fish. This vector system constitutes a unique tool to spatially control gene knockout and greatly broadens the scope of loss-of-function studies in zebrafish.<br /> (Copyright © 2015 Elsevier Inc. All rights reserved.)
- Subjects :
- Anemia, Diamond-Blackfan genetics
Animals
Clustered Regularly Interspaced Short Palindromic Repeats
Disease Models, Animal
Erythrocytes cytology
Genetic Vectors
Luminescent Proteins genetics
Promoter Regions, Genetic genetics
Tumor Suppressor Protein p53 genetics
Zebrafish genetics
Zebrafish Proteins genetics
Red Fluorescent Protein
Gene Knockout Techniques
Genetic Engineering methods
Zebrafish embryology
Subjects
Details
- Language :
- English
- ISSN :
- 1878-1551
- Volume :
- 32
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Developmental cell
- Publication Type :
- Academic Journal
- Accession number :
- 25752963
- Full Text :
- https://doi.org/10.1016/j.devcel.2015.01.032