Back to Search
Start Over
Tau silencing by siRNA in the P301S mouse model of tauopathy.
- Source :
-
Current gene therapy [Curr Gene Ther] 2014; Vol. 14 (5), pp. 343-51. - Publication Year :
- 2014
-
Abstract
- Suppression of tau protein expression has been shown to improve behavioral deficits in mouse models of tauopathies, offering an attractive therapeutic approach. Experimentally this had been achieved by switching off the promoters controlling the transgenic human tau gene (MAPT), which is not possible in human patients. The aim of the present study was therefore to evaluate the effectiveness of small interfering RNAs (siRNAs) and their cerebral delivery to suppress human tau expression in vivo, which might be a therapeutic option for human tauopathies. We used primary cortical neurons of transgenic mice expressing P301S-mutated human tau and Lund human mesencephalic (LUHMES) cells to validate the suppressive effect of siRNA in vitro. For measuring the effect in vivo, we stereotactically injected siRNA into the brains of P301S mice to reveal the suppression of tau by immunochemistry (AT180, MC1, and CP13 antibodies). We found that the Accell™ SMART pool siRNA against MAPT can effectively suppress tau expression in vitro and in vivo without a specific delivery agent. The siRNA showed a moderate distribution in the hippocampus of mice after single injection. NeuN, GFAP, Iba-1, MHC II immunoreactivities and the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed neither signs of neurotoxicity or neuroinflammation nor apoptosis when MAPT siRNA is present in the hippocampus. Our data suggest that siRNA against MAPT can serve as a potential tool for gene therapy in tauopathies.
- Subjects :
- Animals
Apoptosis
Blotting, Western
Brain pathology
Cells, Cultured
Drug Delivery Systems
Embryo, Mammalian cytology
Humans
Immunoenzyme Techniques
Mice
Mice, Inbred C57BL
Mice, Transgenic
Neurons pathology
RNA, Messenger genetics
RNA, Small Interfering administration & dosage
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
Tauopathies genetics
Tauopathies metabolism
tau Proteins genetics
tau Proteins metabolism
Brain metabolism
Disease Models, Animal
Embryo, Mammalian metabolism
Neurons metabolism
RNA, Small Interfering genetics
Tauopathies therapy
tau Proteins antagonists & inhibitors
Subjects
Details
- Language :
- English
- ISSN :
- 1875-5631
- Volume :
- 14
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Current gene therapy
- Publication Type :
- Academic Journal
- Accession number :
- 25687501
- Full Text :
- https://doi.org/10.2174/156652321405140926160602