Back to Search Start Over

The dual role of coherent twin boundaries in hydrogen embrittlement.

Authors :
Seita M
Hanson JP
Gradečak S
Demkowicz MJ
Source :
Nature communications [Nat Commun] 2015 Feb 05; Vol. 6, pp. 6164. Date of Electronic Publication: 2015 Feb 05.
Publication Year :
2015

Abstract

Hydrogen embrittlement (HE) causes engineering alloys to fracture unexpectedly, often at considerable economic or environmental cost. Inaccurate predictions of component lifetimes arise from inadequate understanding of how alloy microstructure affects HE. Here we investigate hydrogen-assisted fracture of a Ni-base superalloy and identify coherent twin boundaries (CTBs) as the microstructural features most susceptible to crack initiation. This is a surprising result considering the renowned beneficial effect of CTBs on mechanical strength and corrosion resistance of many engineering alloys. Remarkably, we also find that CTBs are resistant to crack propagation, implying that hydrogen-assisted crack initiation and propagation are governed by distinct physical mechanisms in Ni-base alloys. This finding motivates a re-evaluation of current lifetime models in light of the dual role of CTBs. It also indicates new paths to designing materials with HE-resistant microstructures.

Details

Language :
English
ISSN :
2041-1723
Volume :
6
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
25652438
Full Text :
https://doi.org/10.1038/ncomms7164