Back to Search Start Over

Deflating trees: improving Bayesian branch-length estimates using informed priors.

Authors :
Nelson BJ
Andersen JJ
Brown JM
Source :
Systematic biology [Syst Biol] 2015 May; Vol. 64 (3), pp. 441-7. Date of Electronic Publication: 2015 Jan 16.
Publication Year :
2015

Abstract

Prior distributions can have a strong effect on the results of Bayesian analyses. However, no general consensus exists for how priors should be set in all circumstances. Branch-length priors are of particular interest for phylogenetics, because they affect many parameters and biologically relevant inferences have been shown to be sensitive to the chosen prior distribution. Here, we explore the use of outside information to set informed branch-length priors and compare inferences from these informed analyses to those using default settings. For both the commonly used exponential and the newly proposed compound Dirichlet prior distributions, the incorporation of relevant outside information improves inferences for data sets that have produced problematic branch- and tree-length estimates under default settings. We suggest that informed priors are worthy of further exploration for phylogenetics.<br /> (© The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1076-836X
Volume :
64
Issue :
3
Database :
MEDLINE
Journal :
Systematic biology
Publication Type :
Academic Journal
Accession number :
25595363
Full Text :
https://doi.org/10.1093/sysbio/syv003