Back to Search
Start Over
Biosynthesis of seven carbon-13 labeled Alternaria toxins including altertoxins, alternariol, and alternariol methyl ether, and their application to a multiple stable isotope dilution assay.
- Source :
-
Analytical and bioanalytical chemistry [Anal Bioanal Chem] 2015 Feb; Vol. 407 (5), pp. 1357-69. Date of Electronic Publication: 2015 Jan 11. - Publication Year :
- 2015
-
Abstract
- An unprecedented stable isotope dilution assay for the genotoxic altertoxins along with exposure data of consumers is presented to enable a first risk assessment of these Alternaria toxins in foods. Altertoxins were produced as the most abundant Alternaria toxins in a modified Czapek-Dox medium with a low level of glucose as the carbon source and ammonium sulfate as the sole nitrogen source. Labeled altertoxins were synthesized in the same way using [(13)C6]glucose. Moreover, labeled alternariol, alternariol methyl ether, altenuene, and alternuisol were biosynthesized in another modified medium containing [(13)C6]glucose and sodium [(13)C2]acetate. A stable isotope dilution LC-MS/MS method was developed and used for food analysis. For altertoxin I, altertoxin II, alterperylenol, alternariol, and alternariol methyl ether, the limits of detection ranged from 0.09 to 0.53 μg kg(-1). The inter-/intra-day (n = 3 × 6) relative standard deviations of the method were below 13%, and the recoveries ranged between 96 and 109%. Among the various commercial food samples, some of the organic whole grains revealed low-level contamination with altertoxin I and alterperylenol, and paprika powder, which was heavily loaded with alternariol, alternariol methyl ether, and tentoxin, showed higher contamination level of altertoxin I and alterperylenol. Altertoxin II and III and stemphyltoxin III were not detectable. In addition, if the food was contaminated with altertoxins, it was likely to be co-contaminated with the other Alternaria toxins, but not necessarily vice versa. Maximum concentrations of altertoxin I and alterperylenol were detected in sorghum feed samples containing 43 and 58 μg kg(-1), respectively. This was significantly higher than that in the measured food samples.
Details
- Language :
- English
- ISSN :
- 1618-2650
- Volume :
- 407
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Analytical and bioanalytical chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 25577349
- Full Text :
- https://doi.org/10.1007/s00216-014-8307-5