Back to Search
Start Over
Enhancing accuracy of mental fatigue classification using advanced computational intelligence in an electroencephalography system.
- Source :
-
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2014; Vol. 2014, pp. 1338-41. - Publication Year :
- 2014
-
Abstract
- A system using electroencephalography (EEG) signals could enhance the detection of mental fatigue while driving a vehicle. This paper examines the classification between fatigue and alert states using an autoregressive (AR) model-based power spectral density (PSD) as the features extraction method and fuzzy particle swarm optimization with cross mutated of artificial neural network (FPSOCM-ANN) as the classification method. Using 32-EEG channels, results indicated an improved overall specificity from 76.99% to 82.02%, an improved sensitivity from 74.92 to 78.99% and an improved accuracy from 75.95% to 80.51% when compared to previous studies. The classification using fewer EEG channels, with eleven frontal sites resulted in 77.52% for specificity, 73.78% for sensitivity and 75.65% accuracy being achieved. For ergonomic reasons, the configuration with fewer EEG channels will enhance capacity to monitor fatigue as there is less set-up time required.
Details
- Language :
- English
- ISSN :
- 2694-0604
- Volume :
- 2014
- Database :
- MEDLINE
- Journal :
- Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
- Publication Type :
- Academic Journal
- Accession number :
- 25570210
- Full Text :
- https://doi.org/10.1109/EMBC.2014.6943846