Back to Search
Start Over
Support Vector Machine with nonlinear-kernel optimization for lateralization of epileptogenic hippocampus in MR images.
- Source :
-
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2014; Vol. 2014, pp. 1047-50. - Publication Year :
- 2014
-
Abstract
- Surgical treatment is suggested for seizure control in medically intractable epilepsy patients. Detailed pre-surgical evaluation and lateralization using Magnetic Resonance Images (MRI) is expected to result in a successful surgical outcome. In this study, an optimized pattern recognition approach is proposed for lateralization of mesial Temporal Lobe Epilepsy (mTLE) patients using asymmetry of imaging indices of hippocampus. T1-weighted and Fluid-Attenuated Inversion Recovery (FLAIR) images of 76 symptomatic mTLE patients are considered. First, hippocampus is segmented using automatic and manual segmentation methods; then, volumetric and intensity features are extracted from the MR images. A nonlinear Support Vector Machine (SVM) with optimized Gaussian Radial Basis Function (GRBF) kernel is used to classify the imaging features. Using leave-one-out cross validation, this method results in a correct lateralization rate of 82%, a probability of detection for the left side of 0.90 (with false alarm probability of 0.04) and a probability of detection for the right side of 0.69 (with zero false alarm probability). The lateralization results are compared to linear SVM, multi-layer perceptron Artificial Neural Network (ANN), and volumetry and FLAIR asymmetry analysis. This lateralization method is suggested for pre-surgical evaluation using MRI before surgical treatment in mTLE patients. It achieves a more correct lateralization rate and fewer false positives.
Details
- Language :
- English
- ISSN :
- 2694-0604
- Volume :
- 2014
- Database :
- MEDLINE
- Journal :
- Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
- Publication Type :
- Academic Journal
- Accession number :
- 25570141
- Full Text :
- https://doi.org/10.1109/EMBC.2014.6943773