Back to Search
Start Over
Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera.
- Source :
-
Infection and immunity [Infect Immun] 2015 Mar; Vol. 83 (3), pp. 1089-103. Date of Electronic Publication: 2015 Jan 05. - Publication Year :
- 2015
-
Abstract
- Vibrio cholerae O1 is a major cause of acute watery diarrhea in over 50 countries. Evidence suggests that V. cholerae O1 may activate inflammatory pathways, and a recent study of a Bangladeshi population showed that variants in innate immune genes play a role in mediating susceptibility to cholera. We analyzed human proteins present in the small intestine of patients infected with V. cholerae O1 to characterize the host response to this pathogen. We collected duodenal biopsy specimens from patients with acute cholera after stabilization and again 30 days after initial presentation. Peptides extracted from biopsy specimens were sequenced and quantified using label-free mass spectrometry and SEQUEST. Twenty-seven host proteins were differentially abundant between the acute and convalescent stages of infection; the majority of these have known roles in innate defense, cytokine production, and apoptosis. Immunostaining confirmed that two proteins, WARS and S100A8, were more abundant in lamina propria cells during the acute stage of cholera. Analysis of the differentially abundant proteins revealed the activation of key regulators of inflammation by the innate immune system, including Toll-like receptor 4, nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, and caspase-dependent inflammasomes. Interleukin-12β (IL-12β) was a regulator of several proteins that were activated during cholera, and we confirmed that IL-12β was produced by lymphocytes recovered from duodenal biopsy specimens of cholera patients. Our study shows that a broad inflammatory response is generated in the gut early after onset of cholera, which may be critical in the development of long-term mucosal immunity against V. cholerae O1.<br /> (Copyright © 2015, American Society for Microbiology. All Rights Reserved.)
- Subjects :
- Acute Disease
Apoptosis immunology
Biopsy
Calgranulin A genetics
Calgranulin A immunology
Cholera immunology
Cholera microbiology
Cholera pathology
Duodenum microbiology
Duodenum pathology
Gene Expression Profiling
Gene Expression Regulation
Host-Pathogen Interactions
Humans
Inflammasomes genetics
Inflammasomes immunology
Interleukin-12 Subunit p40 genetics
Interleukin-12 Subunit p40 immunology
Proteomics
Toll-Like Receptor 4 genetics
Toll-Like Receptor 4 immunology
Tryptophan-tRNA Ligase genetics
Tryptophan-tRNA Ligase immunology
Vibrio cholerae O1 growth & development
Vibrio cholerae O1 immunology
Cholera genetics
Convalescence
Duodenum immunology
Immunity, Mucosal
Signal Transduction immunology
Vibrio cholerae O1 pathogenicity
Subjects
Details
- Language :
- English
- ISSN :
- 1098-5522
- Volume :
- 83
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Infection and immunity
- Publication Type :
- Academic Journal
- Accession number :
- 25561705
- Full Text :
- https://doi.org/10.1128/IAI.02765-14