Back to Search
Start Over
Bone defects and future regenerative nanomedicine approach using stem cells in the mutant Tabby mouse model.
- Source :
-
Bio-medical materials and engineering [Biomed Mater Eng] 2015; Vol. 25 (1 Suppl), pp. 111-9. - Publication Year :
- 2015
-
Abstract
- X-linked Hypohidrotic Ectodermal Dysplasia (XLHED) is associated to a large spectrum of ectodermal and extra-ectodermal symptoms, especially craniofacial bone morphological, structural and metabolic anomalies. This skeletal phenotype described in affected patients and in the Ta mutant mouse model leads to craniofacial dysmorphies, endosseous implants and jaw bone grafts complications. Bone tissue bioengineering based on the use of PCL synthetic nanofibrous membrane and BMP nanoreservoirs appears as an original and promising approach to prevent such complications in the context of dysfunctional bone. Use of osteoblasts or stem cells seeded biomembranes appears as another strategy developed on the Tabby (Ta) model of XLHED. The Ta mouse experimental model is used to study the jaw bone response during the post-operative period after bone lesion and placement of synthetic PCL membrane functionalized with nanoreservoirs embedding different BMPs dimers or seeded with living cells.
- Subjects :
- Animals
Bone Diseases, Developmental genetics
Bone Diseases, Developmental pathology
Ectodermal Dysplasia 1, Anhidrotic pathology
Ectodysplasins genetics
Forecasting
Mice
Mutation genetics
Regenerative Medicine methods
Regenerative Medicine trends
Stem Cell Transplantation trends
Bone Diseases, Developmental therapy
Bone Regeneration physiology
Disease Models, Animal
Ectodermal Dysplasia 1, Anhidrotic therapy
Stem Cell Transplantation methods
Subjects
Details
- Language :
- English
- ISSN :
- 1878-3619
- Volume :
- 25
- Issue :
- 1 Suppl
- Database :
- MEDLINE
- Journal :
- Bio-medical materials and engineering
- Publication Type :
- Academic Journal
- Accession number :
- 25538062
- Full Text :
- https://doi.org/10.3233/BME-141246