Back to Search Start Over

Bone defects and future regenerative nanomedicine approach using stem cells in the mutant Tabby mouse model.

Authors :
Noordijk M
Davideau JL
Eap S
Huck O
Fioretti F
Stoltz JF
Bacon W
Benkirane-Jessel N
Clauss F
Source :
Bio-medical materials and engineering [Biomed Mater Eng] 2015; Vol. 25 (1 Suppl), pp. 111-9.
Publication Year :
2015

Abstract

X-linked Hypohidrotic Ectodermal Dysplasia (XLHED) is associated to a large spectrum of ectodermal and extra-ectodermal symptoms, especially craniofacial bone morphological, structural and metabolic anomalies. This skeletal phenotype described in affected patients and in the Ta mutant mouse model leads to craniofacial dysmorphies, endosseous implants and jaw bone grafts complications. Bone tissue bioengineering based on the use of PCL synthetic nanofibrous membrane and BMP nanoreservoirs appears as an original and promising approach to prevent such complications in the context of dysfunctional bone. Use of osteoblasts or stem cells seeded biomembranes appears as another strategy developed on the Tabby (Ta) model of XLHED. The Ta mouse experimental model is used to study the jaw bone response during the post-operative period after bone lesion and placement of synthetic PCL membrane functionalized with nanoreservoirs embedding different BMPs dimers or seeded with living cells.

Details

Language :
English
ISSN :
1878-3619
Volume :
25
Issue :
1 Suppl
Database :
MEDLINE
Journal :
Bio-medical materials and engineering
Publication Type :
Academic Journal
Accession number :
25538062
Full Text :
https://doi.org/10.3233/BME-141246