Back to Search Start Over

Green fluorescent protein fused to peptide agonists of two dissimilar G protein-coupled receptors: novel ligands of the bradykinin B2 (rhodopsin family) receptor and parathyroid hormone PTH1 (secretin family) receptor.

Authors :
Charest-Morin X
Fortin JP
Bawolak MT
Lodge R
Marceau F
Source :
Pharmacology research & perspectives [Pharmacol Res Perspect] 2013 Oct; Vol. 1 (1), pp. e00004. Date of Electronic Publication: 2013 Oct 04.
Publication Year :
2013

Abstract

We hypothesized that peptide hormone sequences that stimulate and internalize G protein-coupled receptors (GPCRs) could be prolonged with a functional protein cargo. To verify this, we have selected two widely different pairs of peptide hormones and GPCRs that nevertheless share agonist-induced arrestin-mediated internalization. For the parathyroid hormone (PTH) PTH1 receptor (PTH1R) and the bradykinin (BK) B2 receptor (B2R), we have designed fusion proteins of the agonists PTH1-34 and maximakinin (MK, a BK homologue) with the enhanced green fluorescent protein (EGFP), thus producing candidate high molecular weight ligands. According to docking models of each hormone to its receptor, EGFP was fused either at the N-terminus (MK) or C-terminus (PTH1-34) of the ligand; the last construction is also secretable due to inclusion of the preproinsulin signal peptide and has been produced as a conditioned medium. EGFP-MK has been produced as a lysate of transfected cells. Using an enzyme-linked immunosorbent assay (ELISA) for GFP, average concentrations of 1.5 and 1670 nmol/L, respectively, of ligand were found in these preparations. The functional properties and potential of these analogs for imaging receptor-expressing cells were examined. Microscopic and cytofluorometric evidence of specific binding and internalization of both fusion proteins was obtained using recipient HEK 293a cells that expressed the cognate recombinant receptor. Endosomal colocalization studies were conducted (Rab5, Rab7, β-arrestin1). Evidence of agonist signaling was obtained (expression of c-Fos, cyclic AMP responsive element (CRE) reporter gene for PTH1-34-EGFP). The constructs PTH1-34-EGFP and EGFP-MK represent bona fide agonists that support the feasibility of transporting protein cargoes inside cells using GPCRs.

Details

Language :
English
ISSN :
2052-1707
Volume :
1
Issue :
1
Database :
MEDLINE
Journal :
Pharmacology research & perspectives
Publication Type :
Academic Journal
Accession number :
25505558
Full Text :
https://doi.org/10.1002/prp2.4