Back to Search
Start Over
A hypothetical model of crossing Bombyx mori nucleopolyhedrovirus through its host midgut physical barrier.
- Source :
-
PloS one [PLoS One] 2014 Dec 12; Vol. 9 (12), pp. e115032. Date of Electronic Publication: 2014 Dec 12 (Print Publication: 2014). - Publication Year :
- 2014
-
Abstract
- Bombyx mori nucleopolyhedrovirus (BmNPV) is a primary pathogen of silkworm (B. mori) that causes severe economic losses each year. However, the molecular mechanisms of silkworm-BmNPV interactions, especially the silkworm proteins that can interact with the virus, are still largely unknown. In this study, the total and membrane proteins of silkworm midguts were displayed using one- and two-dimensional electrophoresis. A virus overlay assay was used to detect B. mori proteins that specifically bind to BmNPV particles. Twelve proteins were located and identified using mass spectrometry, and the different expression of the corresponding genes in BmNPV susceptible and resistant silkworm strains also indicated their involvement in BmNPV infection. The 12 proteins are grouped based on their potential roles in viral infection, for example, endocytosis, intracellular transportation, and host responses. Based on these results, we hypothesize the following: I) vacuolar ATP synthase catalytic subunit A and subunit B may be implicated in the process of the membrane fusion of virus and the release of the nucleocapsid into cytoplasm; II) actin, enolase and phosphoglycerate kinase are cytoskeleton associated proteins and may play an important role in BmNPV intracellular transportation; III) mitochondrial prohibitin complex protein 2, ganglioside-induced differentiation-associated protein, calreticulin, regucalcin-like isoform X1 and 60 kDa heat shock protein are involved in cell apoptosis regulation during BmNPV infection in larvae midguts; IV) ribosomal P0 may be associated with BmNPV infection by regulating gene expression of BmNPV; V) arginine kinase has a role in the antiviral activities against BmNPV. Our work should prove informative by providing multiple protein targets and a novel direction to investigate the molecular mechanisms of the interactions between silkworms and BmNPV.
- Subjects :
- Actins metabolism
Animals
Arginine Kinase metabolism
DNA Primers genetics
Electrophoresis, Gel, Two-Dimensional
Electrophoresis, Polyacrylamide Gel
Mass Spectrometry
Phosphoglycerate Kinase metabolism
Phosphopyruvate Hydratase metabolism
Prohibitins
Real-Time Polymerase Chain Reaction
Repressor Proteins metabolism
Vacuolar Proton-Translocating ATPases metabolism
Bombyx virology
Gastrointestinal Tract virology
Insect Proteins metabolism
Models, Biological
Nucleopolyhedroviruses metabolism
Nucleopolyhedroviruses physiology
Virus Internalization
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 9
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 25502928
- Full Text :
- https://doi.org/10.1371/journal.pone.0115032