Back to Search Start Over

Restriction of replication fork regression activities by a conserved SMC complex.

Authors :
Xue X
Choi K
Bonner JN
Chiba T
Kwon Y
Xu Y
Sanchez H
Wyman C
Niu H
Zhao X
Sung P
Source :
Molecular cell [Mol Cell] 2014 Nov 06; Vol. 56 (3), pp. 436-445. Date of Electronic Publication: 2014 Oct 16.
Publication Year :
2014

Abstract

Conserved, multitasking DNA helicases mediate diverse DNA transactions and are relevant for human disease pathogenesis. These helicases and their regulation help maintain genome stability during DNA replication and repair. We show that the structural maintenance of chromosome complex Smc5-Smc6 restrains the replication fork regression activity of Mph1 helicase, but not its D loop disruptive activity. This regulatory mechanism enables flexibility in replication fork repair without interfering with DNA break repair. In vitro studies find that Smc5-Smc6 binds to a Mph1 region required for efficient fork regression, preventing assembly of Mph1 oligomers at the junction of DNA forks. In vivo impairment of this regulatory mechanism compensates for the inactivation of another fork regression helicase and increases reliance on joint DNA structure removal or avoidance. Our findings provide molecular insights into replication fork repair regulation and uncover a role of Smc5-Smc6 in directing Mph1 activity toward a specific biochemical outcome.<br /> (Copyright © 2014 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1097-4164
Volume :
56
Issue :
3
Database :
MEDLINE
Journal :
Molecular cell
Publication Type :
Academic Journal
Accession number :
25439736
Full Text :
https://doi.org/10.1016/j.molcel.2014.09.013