Back to Search Start Over

Tracing retinal blood vessels by matrix-forest theorem of directed graphs.

Authors :
Cheng L
De J
Zhang X
Lin F
Li H
Source :
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention [Med Image Comput Comput Assist Interv] 2014; Vol. 17 (Pt 1), pp. 626-33.
Publication Year :
2014

Abstract

This paper aims to trace retinal blood vessel trees in fundus images. This task is far from being trivial as the crossover of vessels are commonly encountered in image-based vessel networks. Meanwhile it is often crucial to separate the vessel tree structures in applications such as diabetic retinopathy analysis. In this work, a novel directed graph based approach is proposed to cast the task as label propagation over directed graphs, such that the graph is to be partitioned into disjoint sub-graphs, or equivalently, each of the vessel trees is traced and separated from the rest of the vessel network. Then the tracing problem is addressed by making novel usage of the matrix-forest theorem in algebraic graph theory. Empirical experiments on synthetic as well as publicly available fundus image datasets demonstrate the applicability of our approach.

Details

Language :
English
Volume :
17
Issue :
Pt 1
Database :
MEDLINE
Journal :
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
Publication Type :
Academic Journal
Accession number :
25333171
Full Text :
https://doi.org/10.1007/978-3-319-10404-1_78