Back to Search
Start Over
Tracing retinal blood vessels by matrix-forest theorem of directed graphs.
- Source :
-
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention [Med Image Comput Comput Assist Interv] 2014; Vol. 17 (Pt 1), pp. 626-33. - Publication Year :
- 2014
-
Abstract
- This paper aims to trace retinal blood vessel trees in fundus images. This task is far from being trivial as the crossover of vessels are commonly encountered in image-based vessel networks. Meanwhile it is often crucial to separate the vessel tree structures in applications such as diabetic retinopathy analysis. In this work, a novel directed graph based approach is proposed to cast the task as label propagation over directed graphs, such that the graph is to be partitioned into disjoint sub-graphs, or equivalently, each of the vessel trees is traced and separated from the rest of the vessel network. Then the tracing problem is addressed by making novel usage of the matrix-forest theorem in algebraic graph theory. Empirical experiments on synthetic as well as publicly available fundus image datasets demonstrate the applicability of our approach.
Details
- Language :
- English
- Volume :
- 17
- Issue :
- Pt 1
- Database :
- MEDLINE
- Journal :
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
- Publication Type :
- Academic Journal
- Accession number :
- 25333171
- Full Text :
- https://doi.org/10.1007/978-3-319-10404-1_78