Back to Search
Start Over
Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory.
Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory.
- Source :
-
Molecular plant [Mol Plant] 2014 Dec; Vol. 7 (12), pp. 1712-26. Date of Electronic Publication: 2014 Sep 29. - Publication Year :
- 2014
-
Abstract
- Throughout their life, plants are challenged by various abiotic and biotic stress factors. Among those are attacks from herbivorous insects. The molecular mechanisms underlying the detection of herbivores and the subsequent signal transduction are not well understood. As a second messenger, fluxes in intracellular Ca(2+) levels play a key role in mediating stress response pathways. Ca(2+) signals are decoded by Ca(2+) sensor proteins such as calmodulin-like proteins (CMLs). Here, we demonstrate that recombinant CML37 behaves like a Ca(2+) sensor in vitro and, in Arabidopsis, AtCML37 is induced by mechanical wounding as well as by infestation with larvae of the generalist lepidopteran herbivore Spodoptera littoralis. Loss of function of CML37 led to a better feeding performance of larvae suggesting that CML37 is a positive defense regulator. No herbivory-induced changes in secondary metabolites such as glucosinolates or flavonoids were detected in cml37 plants, although a significant reduction in the accumulation of jasmonates was observed, due to reduced expression of JAR1 mRNA and cellular enzyme activity. Consequently, the expression of jasmonate-responsive genes was reduced as well. Summarizing, our results suggest that the Ca(2+) sensor protein, CML37, functions as a positive regulator in Ca(2+) signaling during herbivory, connecting Ca(2+) and jasmonate signaling.<br /> (© The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.)
Details
- Language :
- English
- ISSN :
- 1752-9867
- Volume :
- 7
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- Molecular plant
- Publication Type :
- Academic Journal
- Accession number :
- 25267731
- Full Text :
- https://doi.org/10.1093/mp/ssu102