Back to Search
Start Over
Quantitative phosphoproteomics of cytotoxic T cells to reveal protein kinase d 2 regulated networks.
- Source :
-
Molecular & cellular proteomics : MCP [Mol Cell Proteomics] 2014 Dec; Vol. 13 (12), pp. 3544-57. Date of Electronic Publication: 2014 Sep 29. - Publication Year :
- 2014
-
Abstract
- The focus of the present study was to characterize the phosphoproteome of cytotoxic T cells and to explore the role of the serine threonine kinase PKD2 (Protein Kinase D2) in the phosphorylation networks of this key lymphocyte population. We used Stable Isotope Labeling of Amino acids in Culture (SILAC) combined with phosphopeptide enrichment and quantitative mass-spectrometry to determine the impact of PKD2 loss on the cytotoxic T cells phosphoproteome. We identified 15,871 phosphorylations on 3505 proteins in cytotoxic T cells. 450 phosphosites on 281 proteins were down-regulated and 300 phosphosites on 196 proteins were up-regulated in PKD2 null cytotoxic T cells. These data give valuable new insights about the protein phosphorylation networks operational in effector T cells and reveal that PKD2 regulates directly and indirectly about 5% of the cytotoxic T-cell phosphoproteome. PKD2 candidate substrates identified in this study include proteins involved in two distinct biological functions: regulation of protein sorting and intracellular vesicle trafficking, and control of chromatin structure, transcription, and translation. In other cell types, PKD substrates include class II histone deacetylases such as HDAC7 and actin regulatory proteins such as Slingshot. The current data show these are not PKD substrates in primary T cells revealing that the functional role of PKD isoforms is different in different cell lineages.<br /> (© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.)
- Subjects :
- Animals
Antibodies pharmacology
CD3 Complex genetics
CD3 Complex metabolism
Carbon Isotopes
Gene Expression Regulation
Histone Deacetylases genetics
Histone Deacetylases metabolism
Isotope Labeling
Lymphocyte Activation drug effects
Mice
Mice, Transgenic
Nitrogen Isotopes
Organ Specificity
Phosphoprotein Phosphatases genetics
Phosphoprotein Phosphatases metabolism
Phosphoproteins genetics
Phosphorylation
Proteome genetics
Signal Transduction
Spleen cytology
Spleen drug effects
Spleen metabolism
T-Lymphocytes, Cytotoxic cytology
T-Lymphocytes, Cytotoxic drug effects
TRPP Cation Channels deficiency
Gene Regulatory Networks
Phosphoproteins metabolism
Proteome metabolism
T-Lymphocytes, Cytotoxic metabolism
TRPP Cation Channels genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1535-9484
- Volume :
- 13
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- Molecular & cellular proteomics : MCP
- Publication Type :
- Academic Journal
- Accession number :
- 25266776
- Full Text :
- https://doi.org/10.1074/mcp.M113.037242