Back to Search Start Over

Incorporating plasticity of the interfibrillar matrix in shear lag models is necessary to replicate the multiscale mechanics of tendon fascicles.

Authors :
Szczesny SE
Elliott DM
Source :
Journal of the mechanical behavior of biomedical materials [J Mech Behav Biomed Mater] 2014 Dec; Vol. 40, pp. 325-338. Date of Electronic Publication: 2014 Sep 16.
Publication Year :
2014

Abstract

Despite current knowledge of tendon structure, the fundamental deformation mechanisms underlying tendon mechanics and failure are unknown. We recently showed that a shear lag model, which explicitly assumed plastic interfibrillar load transfer between discontinuous fibrils, could explain the multiscale fascicle mechanics, suggesting that fascicle yielding is due to plastic deformation of the interfibrillar matrix. However, it is unclear whether alternative physical mechanisms, such as elastic interfibrillar deformation or fibril yielding, also contribute to fascicle mechanical behavior. The objective of the current work was to determine if plasticity of the interfibrillar matrix is uniquely capable of explaining the multiscale mechanics of tendon fascicles including the tissue post-yield behavior. This was examined by comparing the predictions of a continuous fibril model and three separate shear lag models incorporating an elastic, plastic, or elastoplastic interfibrillar matrix with multiscale experimental data. The predicted effects of fibril yielding on each of these models were also considered. The results demonstrated that neither the continuous fibril model nor the elastic shear lag model can successfully predict the experimental data, even if fibril yielding is included. Only the plastic or elastoplastic shear lag models were capable of reproducing the multiscale tendon fascicle mechanics. Differences between these two models were small, although the elastoplastic model did improve the fit of the experimental data at low applied tissue strains. These findings suggest that while interfibrillar elasticity contributes to the initial stress response, plastic deformation of the interfibrillar matrix is responsible for tendon fascicle post-yield behavior. This information sheds light on the physical processes underlying tendon failure, which is essential to improve our understanding of tissue pathology and guide the development of successful repair.<br /> (Copyright © 2014 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1878-0180
Volume :
40
Database :
MEDLINE
Journal :
Journal of the mechanical behavior of biomedical materials
Publication Type :
Academic Journal
Accession number :
25262202
Full Text :
https://doi.org/10.1016/j.jmbbm.2014.09.005