Back to Search Start Over

Spread and partitioning of arsenic in soils from a mine waste site in Madrid province (Spain).

Authors :
Gomez-Gonzalez MA
Serrano S
Laborda F
Garrido F
Source :
The Science of the total environment [Sci Total Environ] 2014 Dec 01; Vol. 500-501, pp. 23-33. Date of Electronic Publication: 2014 Sep 15.
Publication Year :
2014

Abstract

The formation of scorodite is an important mechanism for the natural attenuation of arsenic in a wide range of environments. It is dumped on site by metallurgical industries to minimize arsenic release. However, the long-term stability of these deposits is unclear. Sequential As extractions and synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy were used to determine both As and Fe speciation in a small catchment area affected by a scorodite-rich waste pile at an abandoned smelting factory. Our results indicate that this deposit behaves as an acute point source of As and metal pollution and confirms the strong association of As(V) with Fe(III) oxide phases, highlighting the important role of ferrihydrite as an As scavenger in natural systems. In this seasonally variable system, other trapping forms such as jarosite-like minerals also play a role in the attenuation of As. Overall, our results demonstrate that scorodite should not be considered an environmental stable repository for As attenuation when dumped outside because natural rainfall and the resulting runoff drive As dispersion in the environment and indicate the need to monitor and reclamate As-rich mine deposits.<br /> (Copyright © 2014 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
500-501
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
25217741
Full Text :
https://doi.org/10.1016/j.scitotenv.2014.08.081