Back to Search
Start Over
Comparative analysis of metazoan chromatin organization.
- Source :
-
Nature [Nature] 2014 Aug 28; Vol. 512 (7515), pp. 449-52. - Publication Year :
- 2014
-
Abstract
- Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.
- Subjects :
- Animals
Cell Line
Centromere genetics
Centromere metabolism
Chromatin chemistry
Chromatin Assembly and Disassembly genetics
DNA Replication genetics
Enhancer Elements, Genetic genetics
Epigenesis, Genetic
Heterochromatin chemistry
Heterochromatin genetics
Heterochromatin metabolism
Histones chemistry
Histones metabolism
Humans
Molecular Sequence Annotation
Nuclear Lamina metabolism
Nucleosomes chemistry
Nucleosomes genetics
Nucleosomes metabolism
Promoter Regions, Genetic genetics
Species Specificity
Caenorhabditis elegans cytology
Caenorhabditis elegans genetics
Chromatin genetics
Chromatin metabolism
Drosophila melanogaster cytology
Drosophila melanogaster genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1476-4687
- Volume :
- 512
- Issue :
- 7515
- Database :
- MEDLINE
- Journal :
- Nature
- Publication Type :
- Academic Journal
- Accession number :
- 25164756
- Full Text :
- https://doi.org/10.1038/nature13415