Back to Search
Start Over
Ab initio study of potential ultrafast internal conversion routes in oxybenzone, caffeic acid, and ferulic acid: implications for sunscreens.
- Source :
-
The journal of physical chemistry. A [J Phys Chem A] 2014 Dec 26; Vol. 118 (51), pp. 11999-2010. Date of Electronic Publication: 2014 Aug 25. - Publication Year :
- 2014
-
Abstract
- Oxybenzone (OB) and ferulic acid (FA) both find use in commercial sunscreens; caffeic acid (CA) differs from FA by virtue of an -OH group in place of a -OCH3 group on the aromatic ring. We report the results of ab initio calculations designed to explore the excited state nonradiative relaxation pathways that provide photostability to these molecules and the photoprotection they offer toward UV-A and UV-B radiation. In the case of OB, internal conversion (IC) is deduced to occur on ultrafast time scales, via a barrierless electron-driven H atom transfer pathway from the S1(1(1)nπ*) state to a conical intersection (CI) with the ground (S0) state potential energy surface (PES). The situation with respect to CA and FA is somewhat less clear-cut, with low energy CIs identified by linking excited states to the S0 state following photoexcitation and subsequent evolution along (i) a ring centered out-of-plane deformation coordinate, (ii) the E/Z isomerism coordinate and, in the case of CA, (iii) an O-H stretch coordinate. Analogy with catechol suggests that the last of these processes (if active) would lead to radical formation (and thus potential phototoxicity), encouraging a suggestion that FA might be superior to CA as a sunscreen ingredient.
Details
- Language :
- English
- ISSN :
- 1520-5215
- Volume :
- 118
- Issue :
- 51
- Database :
- MEDLINE
- Journal :
- The journal of physical chemistry. A
- Publication Type :
- Academic Journal
- Accession number :
- 25137024
- Full Text :
- https://doi.org/10.1021/jp507282d