Back to Search Start Over

6-Methoxyflavone inhibits NFAT translocation into the nucleus and suppresses T cell activation.

Authors :
So JS
Kim GC
Song M
Lee CG
Park E
Kim HJ
Kim YS
Jun CD
Im SH
Source :
Journal of immunology (Baltimore, Md. : 1950) [J Immunol] 2014 Sep 15; Vol. 193 (6), pp. 2772-83. Date of Electronic Publication: 2014 Aug 11.
Publication Year :
2014

Abstract

NFAT plays a crucial role in the immune system by regulating the transcription of inducible genes during immune responses. In T cells, NFAT proteins govern various cellular events related to T cell development, activation, tolerance induction, and differentiation. We previously reported the NFAT1-dependent enhancer activity of conserved noncoding sequence (CNS)-9, a distal cis-acting element, in the regulation of IL-10 transcription in T cells. In this study, we developed a T cell-based reporter system to identify compounds that modulate the regulatory activity of CNS-9. Among the identified candidates, 6-methoxyflavone (6-MF) significantly inhibited the enhancer activity of CNS-9, thereby reducing IL-10 expression in T cells without affecting cell viability. 6-MF also downregulated the transcription of NFAT1 target genes such as IL-4, IL-13, and IFN-γ. Treatment of 6-MF inhibited the translocation of NFAT1 into the nucleus, which consequently interrupted NFAT1 binding to the target loci, without affecting the expression or dephosphorylation of NFAT1. Treatment of 6-MF to CD4(+) T cells or B cells isolated from mice with atopic dermatitis significantly reduced disease-associated cytokine production, as well as the levels of IgE. In addition, oral administration of 6-MF to atopic dermatitis mice ameliorated disease symptoms by reducing serum IgE levels and infiltrating lymphocytes. Conclusively, our results suggest that 6-MF can be a potential candidate for the development of an effective immunomodulator via the suppression of NFAT-mediated T cell activation.<br /> (Copyright © 2014 by The American Association of Immunologists, Inc.)

Details

Language :
English
ISSN :
1550-6606
Volume :
193
Issue :
6
Database :
MEDLINE
Journal :
Journal of immunology (Baltimore, Md. : 1950)
Publication Type :
Academic Journal
Accession number :
25114106
Full Text :
https://doi.org/10.4049/jimmunol.1400285