Back to Search Start Over

Terminally differentiated epithelial cells of the thymic medulla and skin express nicotinic acetylcholine receptor subunit α 3.

Authors :
Soultanova A
Panneck AR
Rafiq A
Kummer W
Source :
BioMed research international [Biomed Res Int] 2014; Vol. 2014, pp. 757502. Date of Electronic Publication: 2014 Jul 03.
Publication Year :
2014

Abstract

In the thymus, T cell maturation is influenced by cholinergic signaling, and the predominantly expressed receptor is the α3-subunit of nicotinic acetylcholine receptors, encoded by the chrna3 gene. We here determined its cellular distribution utilizing an appropriate eGFP-expressing reporter mouse strain. Neither T cells (CD4, CD8) nor mesenchymal cells (desmin-positive) expressed eGFP. In the thymic medulla, eGFP-positive cells either were scattered or, more frequently, formed small clusters resembling Hassall's corpuscles. Immunolabeling revealed that these cells were indeed terminally differentiated epithelial cells expressing keratin 10 (K10) but neither typical cortical (K8, K18) nor medullary keratins (K5, K14). These labeling patterns reflected those in the epidermis of the skin, where overlap of K10 and eGFP expression was seen in the stratum granulosum, whereas underlying basal cells displayed K5-immunoreactivity. A substantial portion of thymic eGFP-positive cells was also immunoreactive to chromogranin A, a peptide previously reported in epidermal keratinocytes in the stratum granulosum. Its fragment catestatin has multiple biological activities, including suppression of proinflammatory cytokine release from macrophages and inhibition of α3β4 nAChR. The present findings suggest that its thymic production and/or release are under cholinergic control involving nAChR containing the α3-subunit.

Details

Language :
English
ISSN :
2314-6141
Volume :
2014
Database :
MEDLINE
Journal :
BioMed research international
Publication Type :
Academic Journal
Accession number :
25105141
Full Text :
https://doi.org/10.1155/2014/757502