Back to Search
Start Over
"Near perfect" amphiphilic conetwork based on end-group cross-linking of polydimethylsiloxane triblock copolymer via atom transfer radical polymerization.
- Source :
-
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2014 Sep 10; Vol. 6 (17), pp. 15283-90. Date of Electronic Publication: 2014 Aug 19. - Publication Year :
- 2014
-
Abstract
- Novel amphiphilic conetworks (APCNs) with uniform channel size were synthesized through end-cross-linking of well-defined amphiphilic triblock copolymers via atom transfer radical polymerization (ATRP). A new ditelechelic polydimethylsiloxane macroinitiator was synthesized to initiate the polymerization of N,N-dimethylacrylamide. The resulting triblock copolymers show well-defined molecular weight with narrow polydisperisty, which are telechelic modified by allylamine and fully cross-linked with polyhydrosiloxanes through hydrosilylation. Transmission electron microscopy shows that the APCN has the behavior of microphase separation with small channel size and uniform phase domain. The resulting APCNs with idealized microstructure exhibit a combination of excellent properties, i.e., superhigh mechanical strength (4 ± 1 MPa) and elongation ratio (175 ± 25%), outstanding oxygen permeability (350 ± 150 barrers), a high water uptake property, and excellent biocompatibility, indicating that in this way, "near perfect" networks are obtained. These results are better than those reported in the literature, suggesting a promising semipermeable barrier for islet encapsulation in relative biomaterial fields.
- Subjects :
- Animals
Cell Line
Chromatography, Gel
Hexanes chemistry
Hydrophobic and Hydrophilic Interactions
Mice
Microscopy, Electron, Scanning
Molecular Weight
Oxygen analysis
Permeability
Proton Magnetic Resonance Spectroscopy
Surface Properties
Water chemistry
Cross-Linking Reagents chemistry
Dimethylpolysiloxanes chemistry
Polymerization
Polymers chemistry
Surface-Active Agents chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1944-8252
- Volume :
- 6
- Issue :
- 17
- Database :
- MEDLINE
- Journal :
- ACS applied materials & interfaces
- Publication Type :
- Academic Journal
- Accession number :
- 25102277
- Full Text :
- https://doi.org/10.1021/am5037252