Back to Search Start Over

A fixed-jaw method to protect critical organs during intensity-modulated radiotherapy.

Authors :
Chen J
Chen X
Huang M
Dai J
Source :
Medical dosimetry : official journal of the American Association of Medical Dosimetrists [Med Dosim] 2014 Winter; Vol. 39 (4), pp. 325-9. Date of Electronic Publication: 2014 Jul 30.
Publication Year :
2014

Abstract

Intensity-modulated radiotherapy (IMRT) plays an important role in cancer radiotherapy. For some patients being treated with IMRT, the extremely low tolerances of critical organs (such as lens, ovaries, and testicles) cannot be met during treatment planning. The aim of this article is to introduce a new planning method to overcome that problem. In current planning practice, jaw positions are automatically set to cover all target volumes by the planning system (e.g., Pinnacle(3) system). Because of such settings, critical organs may be fully blocked by the multileaf collimator (MLC), but they still sit in the field that is shaped by collimator jaws. These critical organs receive doses from the transmission and leakage of MLC leaves. We manually fixed jaw positions to block them to further reduce such doses. This method has been used for different treatment sites in our clinic, and it was thoroughly evaluated in patients with radical hysterectomy plus ovarian transposition after surgery. For each patient, 2 treatment plans were designed with the same optimization parameters: the original plan with automatically chosen jaw positions (called O-plan) and the plan with fixed-jaw positions (named F-plan). In the F-plan, the jaws were manually fixed to block the ovaries. For target coverage, the mean conformity index (CI) of the F-plan (1.28 ± 0.02) was remarkably lower than that of the O-plan (1.53 ± 0.09) (p < 0.05). The F-plan and the O-plan performed similarly in target dose homogeneity. Meanwhile, for the critical organ sparing, the mean dose of both ovaries were much lower in the F-plan than that in the O-plan (p < 0.05). The V20, V30, and V40 of bladder were also lower in the F-plan (93.57 ± 1.98, 73.99 ± 5.76, and 42.33 ± 3.7, respectively) than those in the O-plan (97.98 ± 1.11, 85.07 ± 4.04, and 49.71 ± 3.63, respectively) (p < 0.05). The maximum dose to the spinal cord planning organ at risk (OAR) volume (PRV) in the O-plan (3940.24 ± 102.8) was higher than that in the F-plan (3628.18 ± 131.45) with significant differences (p < 0.01). For other OARs, there were no significant differences in doses between these 2 plans except that the high-dose regions of the rectum were higher for V40 in the O-plan than that in the F-plan (p < 0.01). But the monitor units (MUs) in the F-plan were 1.4 times as much as that in the O-plan. Thus the treatment time could be longer by using the F-plan. As it results in more MUs in spite of better plan quality, it is recommended to be used only in situations in which clinical requirements to critical organs cannot be met with the regular method.<br /> (Copyright © 2014 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1873-4022
Volume :
39
Issue :
4
Database :
MEDLINE
Journal :
Medical dosimetry : official journal of the American Association of Medical Dosimetrists
Publication Type :
Academic Journal
Accession number :
25087082
Full Text :
https://doi.org/10.1016/j.meddos.2014.05.006