Back to Search
Start Over
Mass spectrometry imaging of cassette-dosed drugs for higher throughput pharmacokinetic and biodistribution analysis.
- Source :
-
Analytical chemistry [Anal Chem] 2014 Aug 19; Vol. 86 (16), pp. 8473-80. Date of Electronic Publication: 2014 Aug 08. - Publication Year :
- 2014
-
Abstract
- Cassette dosing of compounds for preclinical drug plasma pharmacokinetic analysis has been shown to be a powerful strategy within the pharmaceutical industry for increasing throughput while decreasing the number of animals used. Presented here for the first time is data on the application of a cassette dosing strategy for label-free tissue distribution studies. The aim of the study was to image the spatial distribution of eight nonproprietary drugs (haloperidol, bufuralol, midazolam, clozapine, terfenadine, erlotinib, olanzapine, and moxifloxacin) in multiple tissues after oral and intravenous cassette dosing (four compounds per dose route). An array of mass spectrometry imaging technologies, including matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI), liquid extraction surface analysis tandem mass spectrometry (LESA-MS/MS), and desorption electrospray ionization mass spectrometry (DESI-MS) was used. Tissue analysis following intravenous and oral administration of discretely and cassette-dosed compounds demonstrated similar relative abundances across a range of tissues indicating that a cassette dosing approach was applicable. MALDI MSI was unsuccessful in detecting all of the target compounds; therefore, DESI MSI, a complementary mass spectrometry imaging technique, was used to detect additional target compounds. In addition, by adapting technology used for tissue profiling (LESA-MS/MS) low spatial resolution mass spectrometry imaging (∼1 mm) was possible for all targets across all tissues. This study exemplifies the power of multiplatform MSI analysis within a pharmaceutical research and development (R&D) environment. Furthermore, we have illustrated that the cassette dosing approach can be readily applied to provide combined, label-free pharmacokinetic and drug distribution data at an early stage of the drug discovery/development process while minimizing animal usage.
Details
- Language :
- English
- ISSN :
- 1520-6882
- Volume :
- 86
- Issue :
- 16
- Database :
- MEDLINE
- Journal :
- Analytical chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 25084360
- Full Text :
- https://doi.org/10.1021/ac502217r