Back to Search
Start Over
Peripheral neurobiologic mechanisms of antiallodynic effect of warm water immersion therapy on persistent inflammatory pain.
- Source :
-
Journal of neuroscience research [J Neurosci Res] 2015 Jan; Vol. 93 (1), pp. 157-66. Date of Electronic Publication: 2014 Jul 31. - Publication Year :
- 2015
-
Abstract
- Water immersion is widely used in physiotherapy and might relieve pain, probably by activating several distinct somatosensory modalities, including tactile, pressure, and thermal sensations. However, the endogenous mechanisms behind this effect remain poorly understood. This study examined whether warm water immersion therapy (WWIT) produces an antiallodynic effect in a model of localized inflammation and whether peripheral opioid, cannabinoid, and adenosine receptors are involved in this effect. Mice were injected with complete Freund's adjuvant (CFA; intraplantar; i.pl.). The withdrawal frequency to mechanical stimuli (von Frey test) was used to determine 1) the effect of WWIT against CFA-induced allodynia and 2) the effect of i.pl. preadministration of naloxone (a nonselective opioid receptor antagonist; 5 µg/paw), caffeine (a nonselective adenosine receptor antagonist; 150 nmol/paw), 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; a selective adenosine A1 receptor antagonist; 10 nmol/paw), and AM630 (a selective cannabinoid receptor type 2 antagonist; 4 µg/paw) on the antiallodynic effect of WWIT against CFA-induced allodynia. Moreover, the influence of WWIT on paw inflammatory edema was measured with a digital micrometer. WWIT produced a significant time-dependent reduction of paw inflammatory allodynia but did not influence paw edema induced by CFA. Naloxone, caffeine, DPCPX, and AM630 injected in the right, but not in the left, hind paw significantly reversed the antiallodynic effect of WWIT. This is the first study to demonstrate the involvement of peripheral receptors in the antiallodynic effect of WWIT in a murine model of persistent inflammatory pain.<br /> (© 2014 Wiley Periodicals, Inc.)
- Subjects :
- Adenosine analogs & derivatives
Adenosine metabolism
Adenosine pharmacology
Animals
Benzoxazines pharmacology
Disease Models, Animal
Edema etiology
Edema therapy
Freund's Adjuvant toxicity
Indoles pharmacology
Male
Mice
Morpholines pharmacology
Naloxone pharmacology
Naphthalenes pharmacology
Narcotic Antagonists pharmacology
Pain Measurement
Receptor, Adenosine A1
Receptor, Cannabinoid, CB2 metabolism
Receptors, Opioid metabolism
Water Purification
Hyperalgesia etiology
Hyperalgesia therapy
Immersion
Inflammation complications
Neurobiology
Subjects
Details
- Language :
- English
- ISSN :
- 1097-4547
- Volume :
- 93
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Journal of neuroscience research
- Publication Type :
- Academic Journal
- Accession number :
- 25079058
- Full Text :
- https://doi.org/10.1002/jnr.23461