Back to Search Start Over

Preparation and preliminary evaluation of 63Zn-zinc citrate as a novel PET imaging biomarker for zinc.

Authors :
DeGrado TR
Pandey MK
Byrne JF
Engelbrecht HP
Jiang H
Packard AB
Thomas KA
Jacobson MS
Curran GL
Lowe VJ
Source :
Journal of nuclear medicine : official publication, Society of Nuclear Medicine [J Nucl Med] 2014 Aug; Vol. 55 (8), pp. 1348-54. Date of Electronic Publication: 2014 Jul 21.
Publication Year :
2014

Abstract

Unlabelled: Abnormalities of zinc homeostasis are indicated in many human diseases. A noninvasive imaging method for monitoring zinc in the body would be useful to understand zinc dynamics in health and disease. To provide a PET imaging agent for zinc, we have investigated production of (63)Zn (half-life, 38.5 min) via the (63)Cu(p,n)(63)Zn reaction using isotopically enriched solutions of (63)Cu-copper nitrate. A solution target was used for rapid isolation of the (63)Zn radioisotope from the parent (63)Cu ions. Initial biologic evaluation was performed by biodistribution and PET imaging in normal mice.<br />Methods: To produce (63)Zn, solutions of (63)Cu-copper nitrate in dilute nitric acid were irradiated by 14-MeV protons in a low-energy cyclotron. An automated module was used to purify (63)Zn from (63)Cu in the target solution. The (63)Cu-(63)Zn mixture was trapped on a cation-exchange resin and rinsed with water, and the (63)Zn was eluted using 0.05 N HCl in 90% acetone. The resulting solution was neutralized with NaHCO3, and the (63)Zn was then trapped on a carboxymethyl cartridge, washed with water, and eluted with isotonic 4% sodium citrate. Standard quality control tests were performed on the product according to current good manufacturing practice, including radionuclidic identity and purity, and measurement of nonradioactive Zn(+2), Cu(+2), Fe(+3), and Ni(+2) by ion-chromatography high-performance liquid chromatography. Biodistribution and PET imaging studies were performed in B6.SJL mice after intravenous administration of (63)Zn-zinc citrate. (63)Cu target material was recycled by eluting the initial resin with 4N HNO3.<br />Results: Yields of 1.07 ± 0.22 GBq (uncorrected at 30-36 min after end of bombardment) of (63)Zn-zinc citrate were obtained with a 1.23 M (63)Cu-copper nitrate solution. Radionuclidic purity was greater than 99.9%, with copper content lower than 3 μg/batch. Specific activities were 41.2 ± 18.1 MBq/μg (uncorrected) for the (63)Zn product. PET and biodistribution studies in mice at 60 min showed expected high uptake in the pancreas (standard uptake value, 8.8 ± 3.2), liver (6.0 ± 1.9), upper intestine (4.7 ± 2.1), and kidney (4.2 ± 1.3).<br />Conclusion: A practical and current good manufacturing practice-compliant preparation of radionuclidically pure (63)Zn-zinc citrate has been developed that will enable PET imaging studies in animal and human studies. (63)Zn-zinc citrate showed the expected biodistribution in mice.<br /> (© 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.)

Details

Language :
English
ISSN :
1535-5667
Volume :
55
Issue :
8
Database :
MEDLINE
Journal :
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
Publication Type :
Academic Journal
Accession number :
25047329
Full Text :
https://doi.org/10.2967/jnumed.114.141218