Back to Search
Start Over
Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix liver scaffolds.
- Source :
-
Journal of biomedical materials research. Part A [J Biomed Mater Res A] 2015 Apr; Vol. 103 (4), pp. 1498-508. Date of Electronic Publication: 2014 Aug 04. - Publication Year :
- 2015
-
Abstract
- To report the results of whole liver decellularization by two different methods. To present the results of grafting rat and sheep decellularized liver matrix (DLM) into the normal rat liver and compare natural cell seeding process in homo/xenograft of DLM. To compare the results of in vitro whole liver recellularization with rats' neonatal green fluorescent protein (GFP)-positive hepatic cells with outcomes of in vivo recellularization process. Whole liver of 8 rats and 4 sheep were resected and cannulated via the hepatic vein and perfused with sodium dodecyl sulfate (SDS) or Triton + SDS. Several examinations were performed to compare the efficacy of these two decellularization procedures. In vivo recellularization of sheep and rat DLMs was performed following transplantation of multiple pieces of both scaffolds in the subhepatic area of four rats. To compare the efficacy of different scaffolds in autologous cell seeding, biopsies of homograft and xenograft were assessed 8 weeks postoperatively. Whole DLMs of 4 rats were also recellularized in vitro by perfusion of rat's fetal GFP-positive hepatic cells with pulsatile bioreactor. Histological evaluation and enzymatic assay were performed for both in vivo and in vitro recellularized samples. The results of this study demonstrated that the triton method was a promising decellularization approach for preserving the three-dimensional structure of liver. In vitro recellularized DLMs were more similar to natural ones compared with in vivo recellularized livers. However, homografts showed better characteristics with more organized structure compared with xenografts. In vitro recellularization of liver scaffolds with autologous cells represents an attractive prospective for regeneration of liver as one of the most compound organs. In vivo cell seeding on the scaffold of the same species may have more satisfactory outcomes when compared with the results of xenotransplantation. This study theoretically may pave the road for in situ liver regeneration probably by implantation of homologous DLM or in vitro recellularized scaffolds into the diseased host liver.<br /> (© 2014 Wiley Periodicals, Inc.)
Details
- Language :
- English
- ISSN :
- 1552-4965
- Volume :
- 103
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Journal of biomedical materials research. Part A
- Publication Type :
- Academic Journal
- Accession number :
- 25045886
- Full Text :
- https://doi.org/10.1002/jbm.a.35291