Back to Search Start Over

Comparisons between detection threshold and loudness perception for individual cochlear implant channels.

Authors :
Bierer JA
Nye AD
Source :
Ear and hearing [Ear Hear] 2014 Nov-Dec; Vol. 35 (6), pp. 641-51.
Publication Year :
2014

Abstract

Objective: The objective of this study was to examine how the level of current required for cochlear implant listeners to detect single-channel electrical pulse trains relates to loudness perception on the same channel. The working hypothesis was that channels with relatively high thresholds, when measured with a focused current pattern, interface poorly to the auditory nerve. For such channels, a smaller dynamic range between perceptual threshold and the most comfortable loudness would result, in part, from a greater sensitivity to changes in electrical field spread compared to low-threshold channels. The narrower range of comfortable listening levels may have important implications for speech perception.<br />Design: Data were collected from eight, adult cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp.). The partial tripolar (pTP) electrode configuration, consisting of one intracochlear active electrode, two flanking electrodes carrying a fraction (σ) of the return current, and an extracochlear ground, was used for stimulation. Single-channel detection thresholds and most comfortable listening levels were acquired using the most focused pTP configuration possible (σ ≥ 0.8) to identify three channels for further testing-those with the highest, median, and lowest thresholds-for each subject. Threshold, equal-loudness contours (at 50% of the monopolar dynamic range), and loudness growth functions were measured for each of these three test channels using various pTP fractions.<br />Results: For all test channels, thresholds increased as the electrode configuration became more focused. The rate of increase with the focusing parameter σ was greatest for the high-threshold channel compared to the median- and low-threshold channels. The 50% equal-loudness contours exhibited similar rates of increase in level across test channels and subjects. Additionally, test channels with the highest thresholds had the narrowest dynamic ranges (for σ ≥ 0.5) and steepest growth of loudness functions for all electrode configurations.<br />Conclusions: Together with previous studies using focused stimulation, the results suggest that auditory responses to electrical stimuli at both threshold and suprathreshold current levels are not uniform across the electrode array of individual cochlear implant listeners. Specifically, the steeper growth of loudness and thus smaller dynamic ranges observed for high-threshold channels are consistent with a degraded electrode-neuron interface, which could stem from lower numbers of functioning auditory neurons or a relatively large distance between the neurons and electrodes. These findings may have potential implications for how stimulation levels are set during the clinical mapping procedure, particularly for speech-processing strategies that use focused electrical fields.

Details

Language :
English
ISSN :
1538-4667
Volume :
35
Issue :
6
Database :
MEDLINE
Journal :
Ear and hearing
Publication Type :
Academic Journal
Accession number :
25036146
Full Text :
https://doi.org/10.1097/AUD.0000000000000058