Back to Search
Start Over
MicroRNA-122 triggers mesenchymal-epithelial transition and suppresses hepatocellular carcinoma cell motility and invasion by targeting RhoA.
- Source :
-
PloS one [PLoS One] 2014 Jul 03; Vol. 9 (7), pp. e101330. Date of Electronic Publication: 2014 Jul 03 (Print Publication: 2014). - Publication Year :
- 2014
-
Abstract
- The loss of microRNA-122 (miR-122) expression is strongly associated with increased invasion and metastasis, and poor prognosis of hepatocellular carcinoma (HCC), however, the underlying mechanisms remain poorly understood. In the present study, we observed that miR-122 over-expression in HCC cell lines Sk-hep-1 and Bel-7402 triggered the mesenchymal-epithelial transition (MET), as demonstrated by epithelial-like morphological changes, up-regulated epithelial proteins (E-cadherin, ZO-1, α-catenin, occludin, BVES, and MST4), and down-regulated mesenchymal proteins (vimentin and fibronectin). The over-expression of miRNA-122 also caused cytoskeleton disruption, RhoA/Rock pathway inactivation, enhanced cell adhesion, and suppression of migration and invasion of Sk-hep-1 and Bel-7402 cells, whereas, these effects could be reversed through miR-122 inhibition. Additional studies demonstrated that the inhibition of wild-type RhoA function induced MET and inhibited cell migration and invasion, while RhoA over-expression reversed miR-122-induced MET and inhibition of migration and invasion of HCC cells, suggesting that miR-122 induced MET and suppressed the migration and invasion of HCC cells by targeting RhoA. Moreover, our results demonstrated that HNF4α up-regulated its target gene miR-122 that subsequently induced MET and inhibited cell migration and invasion, whereas miR-122 inhibition reversed these HNF4α-induced phenotypes. These results revealed functional and mechanistic links among the tumor suppressors HNF4α, miR-122, and RhoA in EMT and invasive and metastatic phenotypes of HCC. Taken together, our study provides the first evidence that the HNF4α/miR-122/RhoA axis negatively regulates EMT and the migration and invasion of HCC cells.
- Subjects :
- 3' Untranslated Regions
Base Sequence
Cadherins metabolism
Carcinoma, Hepatocellular metabolism
Carcinoma, Hepatocellular pathology
Cell Line, Tumor
Cell Movement
Down-Regulation
Epithelial-Mesenchymal Transition
Hepatocyte Nuclear Factor 4 metabolism
Humans
Liver Neoplasms metabolism
Liver Neoplasms pathology
MicroRNAs antagonists & inhibitors
MicroRNAs genetics
Oligonucleotides, Antisense metabolism
Sequence Alignment
Signal Transduction
Transfection
Up-Regulation
Vimentin metabolism
alpha Catenin metabolism
rhoA GTP-Binding Protein chemistry
rhoA GTP-Binding Protein genetics
MicroRNAs metabolism
rhoA GTP-Binding Protein metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 9
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 24992599
- Full Text :
- https://doi.org/10.1371/journal.pone.0101330