Back to Search Start Over

Ancient origins of RGK protein function: modulation of voltage-gated calcium channels preceded the protostome and deuterostome split.

Authors :
Puhl HL 3rd
Lu VB
Won YJ
Sasson Y
Hirsch JA
Ono F
Ikeda SR
Source :
PloS one [PLoS One] 2014 Jul 03; Vol. 9 (7), pp. e100694. Date of Electronic Publication: 2014 Jul 03 (Print Publication: 2014).
Publication Year :
2014

Abstract

RGK proteins, Gem, Rad, Rem1, and Rem2, are members of the Ras superfamily of small GTP-binding proteins that interact with Ca2+ channel β subunits to modify voltage-gated Ca2+ channel function. In addition, RGK proteins affect several cellular processes such as cytoskeletal rearrangement, neuronal dendritic complexity, and synapse formation. To probe the phylogenetic origins of RGK protein-Ca2+ channel interactions, we identified potential RGK-like protein homologs in genomes for genetically diverse organisms from both the deuterostome and protostome animal superphyla. RGK-like protein homologs cloned from Danio rerio (zebrafish) and Drosophila melanogaster (fruit flies) expressed in mammalian sympathetic neurons decreased Ca2+ current density as reported for expression of mammalian RGK proteins. Sequence alignments from evolutionarily diverse organisms spanning the protostome/deuterostome divide revealed conservation of residues within the RGK G-domain involved in RGK protein--Cavβ subunit interaction. In addition, the C-terminal eleven residues were highly conserved and constituted a signature sequence unique to RGK proteins but of unknown function. Taken together, these data suggest that RGK proteins, and the ability to modify Ca2+ channel function, arose from an ancestor predating the protostomes split from deuterostomes approximately 550 million years ago.

Details

Language :
English
ISSN :
1932-6203
Volume :
9
Issue :
7
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
24992013
Full Text :
https://doi.org/10.1371/journal.pone.0100694