Back to Search
Start Over
Determination of resonance Raman cross-sections for use in biological SERS sensing with femtosecond stimulated Raman spectroscopy.
- Source :
-
Analytical chemistry [Anal Chem] 2014 Aug 05; Vol. 86 (15), pp. 7782-7. Date of Electronic Publication: 2014 Jul 09. - Publication Year :
- 2014
-
Abstract
- Surface-enhanced Raman spectroscopy (SERS) is a promising technique for in vivo bioanalyte detection, but accurate characterization of SERS biosensors can be challenging due to difficulties in differentiating resonance and surface enhancement contributions to the Raman signal. Here, we quantitate the resonance Raman cross-sections for a commonly used near-infrared SERS dye, 3,3'-diethylthiatricarbocyanine (DTTC). It is typically challenging to measure resonance Raman cross-sections for fluorescent dye molecules due to the overwhelming isoenergetic fluorescence signal. To overcome this issue, we used etalon-based femtosecond stimulated Raman spectroscopy, which is intrinsically designed to acquire a stimulated Raman signal without strong fluorescence or interference from signals resulting from other four-wave mixing pathways. Using this technique, we found that the cross-sections for most of the resonantly enhanced modes in DTTC exceed 10(-25) cm(2)/molecule. These cross-sections lead to high signal magnitude SERS signals from even weakly enhancing SERS substrates, as much of what appears to be a SERS signal is actually coming from the intrinsically strong resonance Raman signal. Our work will lead to a more accurate determination of SERS enhancement factors and SERS substrate characterization in the biologically relevant near-infrared region, ultimately leading to a more widespread use of SERS for biosensing and bioimaging applications.
- Subjects :
- Spectrum Analysis, Raman methods
Subjects
Details
- Language :
- English
- ISSN :
- 1520-6882
- Volume :
- 86
- Issue :
- 15
- Database :
- MEDLINE
- Journal :
- Analytical chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 24975056
- Full Text :
- https://doi.org/10.1021/ac501701h