Back to Search
Start Over
Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models.
- Source :
-
Nature chemical biology [Nat Chem Biol] 2014 Aug; Vol. 10 (8), pp. 677-85. Date of Electronic Publication: 2014 Jun 29. - Publication Year :
- 2014
-
Abstract
- Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have distinct clinical features but a common pathology--cytoplasmic inclusions rich in transactive response element DNA-binding protein of 43 kDa (TDP43). Rare TDP43 mutations cause ALS or FTD, but abnormal TDP43 levels and localization may cause disease even if TDP43 lacks a mutation. Here we show that individual neurons vary in their ability to clear TDP43 and are exquisitely sensitive to TDP43 levels. To measure TDP43 clearance, we developed and validated a single-cell optical method that overcomes the confounding effects of aggregation and toxicity and discovered that pathogenic mutations shorten TDP43 half-life. New compounds that stimulate autophagy improved TDP43 clearance and localization and enhanced survival in primary murine neurons and in human stem cell-derived neurons and astrocytes harboring mutant TDP43. These findings indicate that the levels and localization of TDP43 critically determine neurotoxicity and show that autophagy induction mitigates neurodegeneration by acting directly on TDP43 clearance.
- Subjects :
- Amino Acid Sequence
Amyotrophic Lateral Sclerosis pathology
Animals
Astrocytes metabolism
Cell Survival
Cells, Cultured
DNA-Binding Proteins genetics
Fluphenazine pharmacology
Half-Life
Humans
Induced Pluripotent Stem Cells physiology
Methotrimeprazine pharmacology
Mice
Microtubule-Associated Proteins genetics
Microtubule-Associated Proteins metabolism
Molecular Sequence Data
Mutation
Rats
Reproducibility of Results
Single-Cell Analysis methods
Small Molecule Libraries pharmacology
Stem Cells metabolism
Amyotrophic Lateral Sclerosis metabolism
Autophagy drug effects
DNA-Binding Proteins metabolism
Neurons metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1552-4469
- Volume :
- 10
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Nature chemical biology
- Publication Type :
- Academic Journal
- Accession number :
- 24974230
- Full Text :
- https://doi.org/10.1038/nchembio.1563