Back to Search
Start Over
The human orphan nuclear receptor tailless (TLX, NR2E1) is druggable.
- Source :
-
PloS one [PLoS One] 2014 Jun 17; Vol. 9 (6), pp. e99440. Date of Electronic Publication: 2014 Jun 17 (Print Publication: 2014). - Publication Year :
- 2014
-
Abstract
- Nuclear receptors (NRs) are an important group of ligand-dependent transcriptional factors. Presently, no natural or synthetic ligand has been identified for a large group of orphan NRs. Small molecules to target these orphan NRs will provide unique resources for uncovering regulatory systems that impact human health and to modulate these pathways with drugs. The orphan NR tailless (TLX, NR2E1), a transcriptional repressor, is a major player in neurogenesis and Neural Stem Cell (NSC) derived brain tumors. No chemical probes that modulate TLX activity are available, and it is not clear whether TLX is druggable. To assess TLX ligand binding capacity, we created homology models of the TLX ligand binding domain (LBD). Results suggest that TLX belongs to an emerging class of NRs that lack LBD helices α1 and α2 and that it has potential to form a large open ligand binding pocket (LBP). Using a medium throughput screening strategy, we investigated direct binding of 20,000 compounds to purified human TLX protein and verified interactions with a secondary (orthogonal) assay. We then assessed effects of verified binders on TLX activity using luciferase assays. As a result, we report identification of three compounds (ccrp1, ccrp2 and ccrp3) that bind to recombinant TLX protein with affinities in the high nanomolar to low micromolar range and enhance TLX transcriptional repressive activity. We conclude that TLX is druggable and propose that our lead compounds could serve as scaffolds to derive more potent ligands. While our ligands potentiate TLX repressive activity, the question of whether it is possible to develop ligands to de-repress TLX activity remains open.
- Subjects :
- Amino Acid Sequence
Binding Sites
COUP Transcription Factor II antagonists & inhibitors
COUP Transcription Factor II physiology
Estrogen Receptor beta antagonists & inhibitors
Estrogen Receptor beta physiology
Genes, Reporter
HeLa Cells
Humans
Inhibitory Concentration 50
Ligands
Luciferases, Renilla biosynthesis
Luciferases, Renilla genetics
Models, Molecular
Molecular Sequence Data
Orphan Nuclear Receptors
Protein Binding
Receptors, Cytoplasmic and Nuclear antagonists & inhibitors
Receptors, Cytoplasmic and Nuclear chemistry
Retinoid X Receptor alpha antagonists & inhibitors
Retinoid X Receptor alpha physiology
Transcription, Genetic drug effects
Dydrogesterone pharmacology
Piperazines pharmacology
Pyrazoles pharmacology
Receptors, Cytoplasmic and Nuclear physiology
Transcriptional Activation drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 9
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 24936658
- Full Text :
- https://doi.org/10.1371/journal.pone.0099440