Back to Search
Start Over
Artemisia scoparia enhances adipocyte development and endocrine function in vitro and enhances insulin action in vivo.
- Source :
-
PloS one [PLoS One] 2014 Jun 10; Vol. 9 (6), pp. e98897. Date of Electronic Publication: 2014 Jun 10 (Print Publication: 2014). - Publication Year :
- 2014
-
Abstract
- Background: Failure of adipocytes to expand during periods of energy excess can result in undesirable metabolic consequences such as ectopic fat accumulation and insulin resistance. Blinded screening studies have indicated that Artemisia scoparia (SCO) extracts can enhance adipocyte differentiation and lipid accumulation in cultured adipocytes. The present study tested the hypothesis that SCO treatment modulates fat cell development and function in vitro and insulin sensitivity in adipose tissue in vivo.<br />Methods: In vitro experiments utilized a Gal4-PPARγ ligand binding domain (LBD) fusion protein-luciferase reporter assay to examine PPARγ activation. To investigate the ability of SCO to modulate adipogenesis and mature fat cell function in 3T3-L1 cells, neutral lipid accumulation, gene expression, and protein secretion were measured by Oil Red O staining, qRT-PCR, and immunoblotting, respectively. For the in vivo experiments, diet-induced obese (DIO) C57BL/6J mice were fed a high-fat diet (HFD) or HFD containing 1% w/w SCO for four weeks. Body weight and composition, food intake, and fasting glucose and insulin levels were measured. Phospho-activation and expression of insulin-sensitizing proteins in epididymal adipose tissue (eWAT) were measured by immunoblotting.<br />Results: Ethanolic extracts of A. scoparia significantly activated the PPARγ LBD and enhanced lipid accumulation in differentiating 3T3-L1 cells. SCO increased the transcription of several PPARγ target genes in differentiating 3T3-L1 cells and rescued the negative effects of tumor necrosis factor α on production and secretion of adiponectin and monocyte chemoattractant protein-1 in fully differentiated fat cells. DIO mice treated with SCO had elevated adiponectin levels and increased phosphorylation of AMPKα in eWAT when compared to control mice. In SCO-treated mice, these changes were also associated with decreased fasting insulin and glucose levels.<br />Conclusion: SCO has metabolically beneficial effects on adipocytes in vitro and adipose tissue in vivo, highlighting its potential as a metabolically favorable botanical supplement.
- Subjects :
- 3T3-L1 Cells
AMP-Activated Protein Kinases metabolism
Adipogenesis genetics
Adipokines metabolism
Adiponectin genetics
Adipose Tissue drug effects
Adipose Tissue metabolism
Animals
Blood Glucose
Body Composition drug effects
Cell Line
Dose-Response Relationship, Drug
Gene Expression Regulation drug effects
Humans
Insulin blood
Male
Mice
PPAR gamma metabolism
Tumor Necrosis Factor-alpha pharmacology
Adipocytes drug effects
Adipocytes metabolism
Adipogenesis drug effects
Artemisia chemistry
Endocrine System drug effects
Insulin metabolism
Plant Extracts pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 9
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 24915004
- Full Text :
- https://doi.org/10.1371/journal.pone.0098897