Back to Search Start Over

Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing.

Authors :
Xu Y
Gao XD
Lee JH
Huang H
Tan H
Ahn J
Reinke LM
Peter ME
Feng Y
Gius D
Siziopikou KP
Peng J
Xiao X
Cheng C
Source :
Genes & development [Genes Dev] 2014 Jun 01; Vol. 28 (11), pp. 1191-203. Date of Electronic Publication: 2014 May 19.
Publication Year :
2014

Abstract

Tumor metastasis remains the major cause of cancer-related death, but its molecular basis is still not well understood. Here we uncovered a splicing-mediated pathway that is essential for breast cancer metastasis. We show that the RNA-binding protein heterogeneous nuclear ribonucleoprotein M (hnRNPM) promotes breast cancer metastasis by activating the switch of alternative splicing that occurs during epithelial-mesenchymal transition (EMT). Genome-wide deep sequencing analysis suggests that hnRNPM potentiates TGFβ signaling and identifies CD44 as a key downstream target of hnRNPM. hnRNPM ablation prevents TGFβ-induced EMT and inhibits breast cancer metastasis in mice, whereas enforced expression of the specific CD44 standard (CD44s) splice isoform overrides the loss of hnRNPM and permits EMT and metastasis. Mechanistically, we demonstrate that the ubiquitously expressed hnRNPM acts in a mesenchymal-specific manner to precisely control CD44 splice isoform switching during EMT. This restricted cell-type activity of hnRNPM is achieved by competition with ESRP1, an epithelial splicing regulator that binds to the same cis-regulatory RNA elements as hnRNPM and is repressed during EMT. Importantly, hnRNPM is associated with aggressive breast cancer and correlates with increased CD44s in patient specimens. These findings demonstrate a novel molecular mechanism through which tumor metastasis is endowed by the hnRNPM-mediated splicing program.<br /> (© 2014 Xu et al.; Published by Cold Spring Harbor Laboratory Press.)

Details

Language :
English
ISSN :
1549-5477
Volume :
28
Issue :
11
Database :
MEDLINE
Journal :
Genes & development
Publication Type :
Academic Journal
Accession number :
24840202
Full Text :
https://doi.org/10.1101/gad.241968.114