Back to Search
Start Over
Plant virus incorporated hydrogels as scaffolds for tissue engineering possess low immunogenicity in vivo.
- Source :
-
Journal of biomedical materials research. Part A [J Biomed Mater Res A] 2015 Mar; Vol. 103 (3), pp. 887-95. Date of Electronic Publication: 2014 May 27. - Publication Year :
- 2015
-
Abstract
- Viruses are no longer recognized purely for being ubiquitous pathogens, but have served as building blocks for material chemistry and nanotechnology. Thousands of coat protein subunits of a viral particle can be modified chemically and/or genetically. We have previously shown that the three-dimensional porous hydrogels can easily be functionalized by Tobacco mosaic virus (TMV), a rod-like plant virus, using its mutant, RGD-TMV. RGD-TMV hosted bioadhesive peptide (RGD) in the hydrogel, which was shown to enhance cell attachment and promote osteogenic differentiation of cultured stem cell. To translate this technology to potential clinical applications, we sought to study the biocompatibility of the hydrogel. In this paper, the hydrogels were implanted in vivo and assessed for their immunogenicity, toxicity, and biodegradability. Immune response for TMV substantially decreased when incorporated in the hydrogel implants. The implanted TMV hydrogels exhibited no apparent toxicity and were degradable in mice. The results highlighted the feasibility of using TMV incorporated hydrogels as scaffolding materials for regenerative medicine in terms of biocompatibility and biodegradability.<br /> (© 2014 Wiley Periodicals, Inc.)
- Subjects :
- Alginates chemistry
Animals
Bone and Bones metabolism
Cell Adhesion
Cell Differentiation
Enzyme-Linked Immunosorbent Assay
Male
Mice
Mice, Inbred BALB C
Mutation
Nanostructures chemistry
Oligopeptides chemistry
Osteogenesis
Paraffin chemistry
Peptides chemistry
Regenerative Medicine
Tobacco Mosaic Virus chemistry
Biocompatible Materials chemistry
Capsid Proteins chemistry
Hydrogels chemistry
Tissue Engineering methods
Tissue Scaffolds
Subjects
Details
- Language :
- English
- ISSN :
- 1552-4965
- Volume :
- 103
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Journal of biomedical materials research. Part A
- Publication Type :
- Academic Journal
- Accession number :
- 24829052
- Full Text :
- https://doi.org/10.1002/jbm.a.35227