Back to Search
Start Over
Two types of nicotinic acetylcholine receptor channels at slow fibre end-plates of the garter snake.
- Source :
-
The Journal of physiology [J Physiol] 1989 Feb; Vol. 409, pp. 313-31. - Publication Year :
- 1989
-
Abstract
- 1. Two different types of acetylcholine receptor channels can be detected on the post-junctional membrane of slow muscle fibres in garter snakes. Here they are designated T-type and S-type channels. Only T-type channels can also be found at twitch fibre neuromuscular junctions. 2. The physiological properties of slow fibre T-type channels are similar to those of acetylcholine receptor channels in end-plates of twitch fibres in these animals. 3. S-type channels had a smaller conductance than T-type channels (32 vs. 49 pS), but a similar reversal potential near 0 mV. 4. Both S- and T-type channels were found together in most patches of slow fibre end-plate membrane, but some patches displayed just one type or the other. 5. The activity of both S- and T-type channels desensitized in the presence of micromolar concentrations of acetylcholine. S-type channels desensitized less rapidly and less completely than did T-type channels. 6. Desensitized channels of both types recovered and produced bursts of activity, then went silent again. During a burst, channels did not appear to change type. 7. The activation of channels of either type was not correlated with activity in channels of the other type. 8. The open-duration distribution of S-type channels required two exponential components to be well fitted, with time constants in the range of 1-2 ms and 3-10 ms. In contrast, the open-duration distribution of T-type channels was a single exponential with a time constant similar in magnitude to the slower S-type component. 9. Desensitization-resistant S-type acetylcholine receptor channels could allow slow muscle end-plates to retain their sensitivity to acetylcholine during periods of heavy use. Under non-desensitizing conditions, differences in the decay properties of slow fibre end-plate currents compared to those in twitch fibres can be explained by the activation kinetics of S-type channels.
Details
- Language :
- English
- ISSN :
- 0022-3751
- Volume :
- 409
- Database :
- MEDLINE
- Journal :
- The Journal of physiology
- Publication Type :
- Academic Journal
- Accession number :
- 2479737
- Full Text :
- https://doi.org/10.1113/jphysiol.1989.sp017499