Back to Search
Start Over
Endothelial progenitor cells augment collateralization and hemodynamic rescue in a model of chronic cerebral ischemia.
- Source :
-
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism [J Cereb Blood Flow Metab] 2014 Aug; Vol. 34 (8), pp. 1297-305. Date of Electronic Publication: 2014 Apr 30. - Publication Year :
- 2014
-
Abstract
- Surgical flow augmentation for treatment of cerebral hemodynamic impairment remains controversial. Here, we investigated the benefit of endothelial progenitor cell (EPC) treatment in a rat model of chronic cerebral hypoperfusion. At repeated time points after 3-vessel occlusion (3-VO), animals were treated with 1 × 10(6) DiI-labeled (a) ex vivo-expanded embryonic-EPC (e-EPC), (b) cyclic AMP-differentiated embryonic-endothelial progenitor-derived cells (e-EPDC as biologic control) or, (c) saline. The cerebrovascular reserve capacity (CVRC) was assessed immediately before and on days 7 and 21 after 3-VO. Structural effects were assessed by latex perfusion, immunohistochemistry, and intravital fluorescence video microscopy on day 21. Three-vessel occlusion resulted in a significant impairment of the CVRC with better functional recovery after treatment with e-EPC (16.4±8%) compared with e-EPDC (3.7±8%) or saline (6.4±9%) by day 21 (P<0.05), which was paralleled by a significant increase in the vessel diameters of the anterior Circle of Willis, a significantly higher number of leptomeningeal anastomoses and higher parenchymal capillary density in e-EPC-treated animals. Interestingly, despite in vivo interaction of e-EPC with the cerebral endothelium, e-EPC incorporation into the cerebral vasculature was not observed. Our results suggest that EPC may serve as a novel therapeutic agent in clinical trials for nonsurgical treatment of chronic cerebral hemodynamic impairment.
- Subjects :
- Animals
Brain Ischemia physiopathology
Cell Differentiation
Disease Models, Animal
Endothelial Cells cytology
Human Umbilical Vein Endothelial Cells
Humans
Male
Mice
Microscopy, Fluorescence
Neovascularization, Physiologic
Rats
Rats, Sprague-Dawley
Stem Cells cytology
Stem Cells physiology
Brain Ischemia therapy
Cerebrovascular Circulation physiology
Collateral Circulation physiology
Endothelial Cells transplantation
Endothelium, Vascular physiopathology
Stem Cell Transplantation
Subjects
Details
- Language :
- English
- ISSN :
- 1559-7016
- Volume :
- 34
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
- Publication Type :
- Academic Journal
- Accession number :
- 24780900
- Full Text :
- https://doi.org/10.1038/jcbfm.2014.78