Back to Search Start Over

Sweet Taste-Sensing Receptors Expressed in Pancreatic β-Cells: Sweet Molecules Act as Biased Agonists.

Authors :
Kojima I
Nakagawa Y
Ohtsu Y
Medina A
Nagasawa M
Source :
Endocrinology and metabolism (Seoul, Korea) [Endocrinol Metab (Seoul)] 2014 Mar; Vol. 29 (1), pp. 12-9.
Publication Year :
2014

Abstract

The sweet taste receptors present in the taste buds are heterodimers comprised of T1R2 and T1R3. This receptor is also expressed in pancreatic β-cells. When the expression of receptor subunits is determined in β-cells by quantitative reverse transcription polymerase chain reaction, the mRNA expression level of T1R2 is extremely low compared to that of T1R3. In fact, the expression of T1R2 is undetectable at the protein level. Furthermore, knockdown of T1R2 does not affect the effect of sweet molecules, whereas knockdown of T1R3 markedly attenuates the effect of sweet molecules. Consequently, a homodimer of T1R3 functions as a receptor sensing sweet molecules in β-cells, which we designate as sweet taste-sensing receptors (STSRs). Various sweet molecules activate STSR in β-cells and augment insulin secretion. With regard to intracellular signals, sweet molecules act on STSRs and increase cytoplasmic Ca(2+) and/or cyclic AMP (cAMP). Specifically, when an STSR is stimulated by one of four different sweet molecules (sucralose, acesulfame potassium, sodium saccharin, or glycyrrhizin), distinct signaling pathways are activated. Patterns of changes in cytoplasmic Ca(2+) and/or cAMP induced by these sweet molecules are all different from each other. Hence, sweet molecules activate STSRs by acting as biased agonists.

Details

Language :
English
ISSN :
2093-596X
Volume :
29
Issue :
1
Database :
MEDLINE
Journal :
Endocrinology and metabolism (Seoul, Korea)
Publication Type :
Academic Journal
Accession number :
24741449
Full Text :
https://doi.org/10.3803/EnM.2014.29.1.12