Back to Search Start Over

TSPAN2 is involved in cell invasion and motility during lung cancer progression.

Authors :
Otsubo C
Otomo R
Miyazaki M
Matsushima-Hibiya Y
Kohno T
Iwakawa R
Takeshita F
Okayama H
Ichikawa H
Saya H
Kiyono T
Ochiya T
Tashiro F
Nakagama H
Yokota J
Enari M
Source :
Cell reports [Cell Rep] 2014 Apr 24; Vol. 7 (2), pp. 527-538. Date of Electronic Publication: 2014 Apr 13.
Publication Year :
2014

Abstract

In lung cancer progression, p53 mutations are more often observed in invasive tumors than in noninvasive tumors, suggesting that p53 is involved in tumor invasion and metastasis. To understand the nature of p53 function as a tumor suppressor, it is crucial to elucidate the detailed mechanism of the alteration in epithelial cells that follow oncogenic KRAS activation and p53 inactivation. Here, we report that KRAS activation induces epithelial-mesenchymal transition and that p53 inactivation is required for cell motility and invasiveness. Furthermore, TSPAN2, a transmembrane protein, is responsible for cell motility and invasiveness elicited by p53 inactivation. TSPAN2 is highly expressed in p53-mutated lung cancer cells, and high expression of TSPAN2 is associated with the poor prognosis of lung adenocarinomas. TSPAN2 knockdown suppresses metastasis to the lungs and liver, enabling prolonged survival. TSPAN2 enhances cell motility and invasiveness by assisting CD44 in scavenging intracellular reactive oxygen species.<br /> (Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
2211-1247
Volume :
7
Issue :
2
Database :
MEDLINE
Journal :
Cell reports
Publication Type :
Academic Journal
Accession number :
24726368
Full Text :
https://doi.org/10.1016/j.celrep.2014.03.027