Back to Search Start Over

In situ fabrication of quasi-free-standing epitaxial graphene nanoflakes on gold.

Authors :
Leicht P
Zielke L
Bouvron S
Moroni R
Voloshina E
Hammerschmidt L
Dedkov YS
Fonin M
Source :
ACS nano [ACS Nano] 2014 Apr 22; Vol. 8 (4), pp. 3735-42. Date of Electronic Publication: 2014 Apr 02.
Publication Year :
2014

Abstract

Addressing the multitude of electronic phenomena theoretically predicted for confined graphene structures requires appropriate in situ fabrication procedures yielding graphene nanoflakes (GNFs) with well-defined geometries and accessible electronic properties. Here, we present a simple strategy to fabricate quasi-free-standing GNFs of variable sizes, performing temperature programmed growth of graphene flakes on the Ir(111) surface and subsequent intercalation of gold. Using scanning tunneling microscopy (STM), we show that epitaxial GNFs on a perfectly ordered Au(111) surface are formed while maintaining an unreconstructed, singly hydrogen-terminated edge structure, as confirmed by the accompanying density functional theory (DFT) calculations. Using tip-induced lateral displacement of GNFs, we demonstrate that GNFs on Au(111) are to a large extent decoupled from the Au(111) substrate. The direct accessibility of the electronic states of a single GNF is demonstrated upon analysis of the quasiparticle interference patterns obtained by low-temperature STM. These findings open up an interesting playground for diverse investigations of graphene nanostructures with possible implications for device fabrication.

Details

Language :
English
ISSN :
1936-086X
Volume :
8
Issue :
4
Database :
MEDLINE
Journal :
ACS nano
Publication Type :
Academic Journal
Accession number :
24694063
Full Text :
https://doi.org/10.1021/nn500396c